Solveeit Logo

Question

Mathematics Question on Conic sections

If the length of the latus rectum of an ellipse is 44 units and the distance between a focus and its nearest vertex on the major axis is 32\frac{3}{2} units, then its eccentricity is :

A

12\frac{1}{2}

B

13\frac{1}{3}

C

23\frac{2}{3}

D

19\frac{1}{9}

Answer

13\frac{1}{3}

Explanation

Solution

Given: 2b2a=4 \frac{2 b^2}{a}=4
b2=2a\Rightarrow b^{2}=2 a
b2=a2(1e2)b^{2}=a^{2}\left(1-e^{2}\right)
a(1e)=32a(1-e)=\frac{3}{2}
So 2=a(1e)(1+e)2=32(1+e)2=a(1-e)(1+e) \Rightarrow 2=\frac{3}{2}(1+e)
4=3+3e\Rightarrow 4=3+3 e
e=13\Rightarrow e=\frac{1}{3}