Solveeit Logo

Question

Question: If the length of subnormal is equal to the length of sub tangent at any point (3,4) on the curve y=f...

If the length of subnormal is equal to the length of sub tangent at any point (3,4) on the curve y=f(x) and the tangent at (3,4) to y=f(x) meets the coordinate axis at A and B, the maximum area of OAB.\vartriangle OAB. where O is origin, is

Explanation

Solution

Important formulas used to solve such questions:
Length of subtangent- y×dxdyy \times \dfrac{{dx}}{{dy}}
Length of subnormal- y×dydxy \times \dfrac{{dy}}{{dx}}
Equation of tangent passing through the point (a,b) and having slope m is given by- (ya)=m(xb)(y - a) = m(x - b)

Complete step-by-step answer:

Given: Length of subtangent= length of subnormal

y×dxdy=y×dydx (dydx)2=1 dydx=±1  \Rightarrow y \times \dfrac{{dx}}{{dy}} = y \times \dfrac{{dy}}{{dx}} \\\ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)^2} = 1 \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \pm 1 \\\

Now, Equation of tangent passing through point (3,4) and having slope 1 is given as:

(ya)=m(xb) (y4)=1(x3) y=x+1  \Rightarrow (y - a) = m(x - b) \\\ \Rightarrow (y - 4) = 1(x - 3) \\\ \Rightarrow y = x + 1 \\\

So, the coordinates of A and B are (-1,0) and (0,1) respectively.
Area of OAB\triangle OABis given as:

12×OA×OB 12×1×1......(O=origin) 12sq.units  \Rightarrow \dfrac{1}{2} \times OA \times OB \\\ \Rightarrow \dfrac{1}{2} \times 1 \times 1......(O = origin) \\\ \Rightarrow \dfrac{1}{2}sq.units \\\

Similarly, equation of tangent passing through point (3,4) and having slope 1 is given as:

(ya)=m(xb) (y4)=(1)(x3) y4=3x y+x=7  \Rightarrow (y - a) = m(x - b) \\\ \Rightarrow (y - 4) = ( - 1)(x - 3) \\\ \Rightarrow y - 4 = 3 - x \\\ \Rightarrow y + x = 7 \\\

So, the coordinates of A and B are (7,0) and (0,7) respectively.
Area of OAB\triangle OABis given as:

12×OA×OB 12×7×7......(O=origin) 492sq.units  \Rightarrow \dfrac{1}{2} \times OA \times OB \\\ \Rightarrow \dfrac{1}{2} \times 7 \times 7......(O = origin) \\\ \Rightarrow \dfrac{{49}}{2}sq.units \\\

So, the maximum area of OAB\triangle OAB is 492sq.units\dfrac{{49}}{2}sq.units.

Note: In above question we have given that the tangent meets coordinate axes means it will meet at abscissa and ordinate axes. The above coordinates can be found by putting once x=0 and then y=0.