Solveeit Logo

Question

Question: If the length of subnormal is equal to length of subtangent at any point (3, 4) on the curve y = ƒ(x...

If the length of subnormal is equal to length of subtangent at any point (3, 4) on the curve y = ƒ(x) and the tangent at (3, 4) to y = ­ƒ(x) meets the coordinate axes at A and B, then maximum area of the ∆OAB where O is origin, is –

A

452\frac{45}{2}

B

492\frac{49}{2}

C

252\frac{25}{2}

D

812\frac{81}{2}

Answer

492\frac{49}{2}

Explanation

Solution

Length of subnormal = length of subtangent

⇒  dydx\frac{dy}{dx} = ± 1

If dydx\frac{dy}{dx} = 1, equation of tangent is

y – 4 = x – 3 ⇒ y – x = 1

Area of ∆OAB = 12\frac{1}{2} × 1 × 1 = 12\frac{1}{2} … (i)

If dydx\frac{dy}{dx} = –1, equation of tangent is

y – 4 = – x + 3 ⇒ x + y = 7

Area of ∆OAB = 12\frac{1}{2} × 7 × 7 = 492\frac{49}{2} … (ii)

∴ Maximum area = 492\frac{49}{2}

Hence (2) is the correct answer.