Solveeit Logo

Question

Question: If the length of perpendicular drawn from origin on a plane is 7 units and its direction ratios are ...

If the length of perpendicular drawn from origin on a plane is 7 units and its direction ratios are –3, 2, 6, then that plane is

A

3x+2y+6z7=0- 3x + 2y + 6z - 7 = 0

B

3x+2y+6z49=0- 3x + 2y + 6z - 49 = 0

C

3x2y+6z+7=03x - 2y + 6z + 7 = 0

D

3x+2y6z49=0- 3x + 2y - 6z - 49 = 0

Answer

3x+2y+6z49=0- 3x + 2y + 6z - 49 = 0

Explanation

Solution

Equation of a plane, when direction ratio and length of perpendicular is given, ax+by+cz=pa2+b2+c2a x + b y + c z = p \sqrt { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } }

Given, (a,b,c)(3,2,6)( a , b , c ) \rightarrow ( - 3,2,6 )

3x+2y+6z=7(3)2+22+62- 3 x + 2 y + 6 z = 7 \sqrt { ( - 3 ) ^ { 2 } + 2 ^ { 2 } + 6 ^ { 2 } }

3x+2y+6z=49- 3 x + 2 y + 6 z = 49.