Solveeit Logo

Question

Question: If the last term in the binomial expansion of \( {\left( {{2^{\dfrac{1}{3}}} - \dfrac{1}{{\sqrt 2 }}...

If the last term in the binomial expansion of (21312)n{\left( {{2^{\dfrac{1}{3}}} - \dfrac{1}{{\sqrt 2 }}} \right)^n} is (1353)log38{\left( {\dfrac{1}{{{3^{\dfrac{5}{3}}}}}} \right)^{{{\log }_3}8}} , then the 5th term from the beginning is
A. 210
B. 420
C. 105
D. None of these

Explanation

Solution

Hint : Find the last term of the given binomial expansion using the general form of a term formula of binomial expansion which is mentioned below and equate it to the given value and then get the value of n. So with this n value we can get the value of the 5th term.
General term of (xy)n{\left( {x - y} \right)^n} is Tr+1=(1)r.nCrxnryr{T_{r + 1}} = {\left( { - 1} \right)^r}.{}_{}^nC_r^{}{x^{n - r}}{y^r}

Complete step-by-step answer :
We are given that the last term in the binomial expansion of (21312)n{\left( {{2^{\dfrac{1}{3}}} - \dfrac{1}{{\sqrt 2 }}} \right)^n} is (1353)log38{\left( {\dfrac{1}{{{3^{\dfrac{5}{3}}}}}} \right)^{{{\log }_3}8}} .
We have to find the value of its 5th term.
Considering 213{2^{\dfrac{1}{3}}} as x and 12\dfrac{1}{{\sqrt 2 }} as y, (21312)n{\left( {{2^{\dfrac{1}{3}}} - \dfrac{1}{{\sqrt 2 }}} \right)^n} becomes (xy)n{\left( {x - y} \right)^n}
So the general term of (xy)n{\left( {x - y} \right)^n} is Tr+1=(1)r.nCrxnryr{T_{r + 1}} = {\left( { - 1} \right)^r}.{}_{}^nC_r^{}{x^{n - r}}{y^r}
For the last term of an expansion, the value of r is n as n+1n + 1 is the last term.
Therefore, the last term is Tn+1=(1)n.nCnxnnyn{T_{n + 1}} = {\left( { - 1} \right)^n}.{}_{}^nC_n^{}{x^{n - n}}{y^n}
So the last term of (21312)n{\left( {{2^{\dfrac{1}{3}}} - \dfrac{1}{{\sqrt 2 }}} \right)^n} is Tn+1=(1)n.nCn(213)nn(12)n{T_{n + 1}} = {\left( { - 1} \right)^n}.{}_{}^nC_n^{}{\left( {{2^{\dfrac{1}{3}}}} \right)^{n - n}}{\left( {\dfrac{1}{{\sqrt 2 }}} \right)^n}
The value of nCn{}_{}^nC_n^{} is 1 and anything power zero is 1.
Tn+1=(1)n(12)n\Rightarrow {T_{n + 1}} = {\left( { - 1} \right)^n}{\left( {\dfrac{1}{{\sqrt 2 }}} \right)^n}
Tn+1=(12)n\Rightarrow {T_{n + 1}} = {\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)^n}
We are given that the value of the last term is (1353)log38{\left( {\dfrac{1}{{{3^{\dfrac{5}{3}}}}}} \right)^{{{\log }_3}8}} , 8 is the cube of 2, which can also be written as (1353)3log32{\left( {\dfrac{1}{{{3^{\dfrac{5}{3}}}}}} \right)^{3{{\log }_3}2}} as [logam=mloga\log {a^m} = m\log a]
353×3log32=35log32\Rightarrow {3^{\dfrac{{ - 5}}{3} \times 3{{\log }_3}2}} = {3^{ - 5{{\log }_3}2}}
3log325\Rightarrow {3^{{{\log }_3}{2^{ - 5}}}} as [mloga=logamm\log a = \log {a^m}]
3log325=25\Rightarrow {3^{{{\log }_3}{2^{ - 5}}}} = {2^{ - 5}} as [alogab=b{a^{{{\log }_a}b}} = b ]
The last term of the expansion is 25{2^{ - 5}} which is equal to (12)n{\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)^n}
(12)n=25{\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)^n} = {2^{ - 5}}
(1)n2(n2)=25\Rightarrow \dfrac{{{{\left( { - 1} \right)}^n}}}{{{2^{\left( {\dfrac{n}{2}} \right)}}}} = {2^{ - 5}}
(1)n2(n2)=125\Rightarrow \dfrac{{{{\left( { - 1} \right)}^n}}}{{{2^{\left( {\dfrac{n}{2}} \right)}}}} = \dfrac{1}{{{2^5}}}
Numerator is positive so n must be an even number. The bases of the denominators are equal so we are equating their powers.
n2=5n=2×5=10\Rightarrow \dfrac{n}{2} = 5 \Rightarrow n = 2 \times 5 = 10
The value of n is 10.
For the 5th term of the expansion, the value of r is 4, n is 10.
T4+1=(1)4.10C4(213)104(12)4{T_{4 + 1}} = {\left( { - 1} \right)^4}.{}_{}^{10}C_4^{}{\left( {{2^{\dfrac{1}{3}}}} \right)^{10 - 4}}{\left( {\dfrac{1}{{\sqrt 2 }}} \right)^4}
T5=10C4(213)6(12)4\Rightarrow {T_5} = {}_{}^{10}C_4^{}{\left( {{2^{\dfrac{1}{3}}}} \right)^6}{\left( {\dfrac{1}{{\sqrt 2 }}} \right)^4} as even powers of -1 is 1.
The value of 10C4{}_{}^{10}C_4^{} is 210
T5=210×(263)×1(2)4\Rightarrow {T_5} = 210 \times \left( {{2^{\dfrac{6}{3}}}} \right) \times \dfrac{1}{{{{\left( {\sqrt 2 } \right)}^4}}}
T5=210×(22)×122=210\Rightarrow {T_5} = 210 \times \left( {{2^2}} \right) \times \dfrac{1}{{{2^2}}} = 210
Therefore, the 5th term of (21312)10{\left( {{2^{\dfrac{1}{3}}} - \dfrac{1}{{\sqrt 2 }}} \right)^{10}} is 210210.
So, the correct answer is “Option A”.

Note : For every binomial expansion with degree n, we will have n+1n + 1 terms. So n+1n + 1 th term will be the last term for every expansion. Be careful with the exponents as when we send a negative exponent from numerator to denominator it becomes positive and vice-versa. Odd powers of -1 give -1 itself.