Solveeit Logo

Question

Question: If the largest possible coefficient of $x^{2016}$ in $(1 + x^{3n} + x^{504})^{10}$ (where $n \leq 25...

If the largest possible coefficient of x2016x^{2016} in (1+x3n+x504)10(1 + x^{3n} + x^{504})^{10} (where n25,nNn \leq 25, n \in N) is c, then the value of n + c is

A

10C4+4P4^{10}C_4 + ^4P_4

B

10C3+6P6^{10}C_3 + ^6P_6

C

11C4+6P6^{11}C_4 + ^6P_6

D

11C4+4P4^{11}C_4 + ^4P_4

Answer

11C4+4P4^{11}C_4 + ^4P_4

Explanation

Solution

The general term in the expansion of (1+x3n+x504)10(1 + x^{3n} + x^{504})^{10} is given by the multinomial theorem: 10!p!q!r!(1)p(x3n)q(x504)r=10!p!q!r!x3nq+504r\frac{10!}{p!q!r!} (1)^p (x^{3n})^q (x^{504})^r = \frac{10!}{p!q!r!} x^{3nq + 504r} where p,q,rp, q, r are non-negative integers such that p+q+r=10p+q+r = 10.

We are looking for the coefficient of x2016x^{2016}, so we must have: 3nq+504r=20163nq + 504r = 2016 Dividing the equation by 3, we get: nq+168r=672nq + 168r = 672 We are given that nn is a natural number and n25n \leq 25, so 1n251 \leq n \leq 25. Also, qq and rr are non-negative integers, and q+r10q+r \leq 10 (since p=10qr0p = 10-q-r \geq 0).

From nq+168r=672nq + 168r = 672, since nq0nq \geq 0, we have 168r672168r \leq 672, which implies r672168=4r \leq \frac{672}{168} = 4. So, possible values for rr are 0,1,2,3,40, 1, 2, 3, 4.

Case 1: r=4r = 4 nq+168(4)=672    nq=0nq + 168(4) = 672 \implies nq = 0. Since n1n \geq 1, qq must be 0. The condition q+r10q+r \leq 10 becomes 0+4100+4 \leq 10, which is satisfied. For q=0,r=4q=0, r=4, we get p=1004=6p = 10 - 0 - 4 = 6. The triplet (p,q,r)=(6,0,4)(p,q,r) = (6,0,4) is valid for any nn in the range 1n251 \leq n \leq 25. The coefficient for this triplet is 10!6!0!4!=10×9×8×74×3×2×1=210\frac{10!}{6!0!4!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210.

Case 2: r=3r = 3 nq+168(3)=672    nq=168nq + 168(3) = 672 \implies nq = 168. The condition q+r10q+r \leq 10 becomes q+310q+3 \leq 10, so q7q \leq 7. We need to find nn (1n251 \leq n \leq 25) such that nq=168nq=168 and q7q \leq 7.

  • If q=1,n=168q=1, n=168 (invalid nn)
  • If q=2,n=84q=2, n=84 (invalid nn)
  • If q=3,n=56q=3, n=56 (invalid nn)
  • If q=4,n=42q=4, n=42 (invalid nn)
  • If q=5,n=168/5q=5, n=168/5 (not integer)
  • If q=6,n=28q=6, n=28 (invalid nn)
  • If q=7,n=168/7=24q=7, n=168/7 = 24. This is a valid value for nn (124251 \leq 24 \leq 25). So, for n=24n=24, we have q=7,r=3q=7, r=3. This gives p=1073=0p = 10 - 7 - 3 = 0. The triplet (p,q,r)=(0,7,3)(p,q,r) = (0,7,3) is valid only for n=24n=24. The coefficient for this triplet is 10!0!7!3!=10×9×83×2×1=120\frac{10!}{0!7!3!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 120.

Case 3: r=2r = 2 nq+168(2)=672    nq=336nq + 168(2) = 672 \implies nq = 336. We need q102=8q \leq 10-2=8. If q=8,n=336/8=42q=8, n=336/8 = 42 (invalid nn). No valid nn in the range 1n251 \le n \le 25.

Case 4: r=1r = 1 nq+168(1)=672    nq=504nq + 168(1) = 672 \implies nq = 504. We need q101=9q \leq 10-1=9. If q=9,n=504/9=56q=9, n=504/9 = 56 (invalid nn). No valid nn in the range 1n251 \le n \le 25.

Case 5: r=0r = 0 nq+168(0)=672    nq=672nq + 168(0) = 672 \implies nq = 672. We need q100=10q \leq 10-0=10. If q=10,n=67.2q=10, n=67.2 (not integer). No valid nn in the range 1n251 \le n \le 25.

For any nn such that 1n251 \leq n \leq 25 and n24n \neq 24, the only way to form x2016x^{2016} is using the triplet (p,q,r)=(6,0,4)(p,q,r)=(6,0,4), which gives a coefficient of 210. For n=24n=24, we have two ways to form x2016x^{2016}:

  1. Triplet (p,q,r)=(6,0,4)(p,q,r)=(6,0,4), coefficient = 210.
  2. Triplet (p,q,r)=(0,7,3)(p,q,r)=(0,7,3), coefficient = 120. The total coefficient for n=24n=24 is 210+120=330210 + 120 = 330.

The largest possible coefficient cc is 330, which occurs when n=24n=24. The value of n+cn+c is 24+330=35424 + 330 = 354. Checking the options: Option (4) is 11C4+4P4=11!4!7!+4!0!=330+24=354^{11}C_4 + ^4P_4 = \frac{11!}{4!7!} + \frac{4!}{0!} = 330 + 24 = 354. Thus, c=11C4c = ^{11}C_4 and n=4P4n = ^4P_4.