Solveeit Logo

Question

Question: If the inverse trigonometric identity \({\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{2\pi }}{3}\) hol...

If the inverse trigonometric identity tan1x+tan1y=2π3{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{2\pi }}{3} holds true, then what will the value be of cot1x+cot1y{\cot ^{ - 1}}x + {\cot ^{ - 1}}y is equal to
(a) π2 (b) 12 (c) π3 (d) 32 (e) π  (a){\text{ }}\dfrac{\pi }{2} \\\ (b){\text{ }}\dfrac{1}{2} \\\ (c){\text{ }}\dfrac{\pi }{3} \\\ (d){\text{ }}\dfrac{{\sqrt 3 }}{2} \\\ (e){\text{ }}\pi \\\

Explanation

Solution

Hint – In this question use the trigonometric identity that tan1A+cot1A=π2{\tan ^{ - 1}}A + {\cot ^{ - 1}}A = \dfrac{\pi }{2}, to change tan1x and tan1y{\tan ^{ - 1}}x{\text{ and ta}}{{\text{n}}^{ - 1}}y in the given equation into cot1x and cot1y{\cot ^{ - 1}}x{\text{ and co}}{{\text{t}}^{ - 1}}y. This will help getting the answer.

Complete step-by-step solution -
Given trigonometric equation is
tan1x+tan1y=2π3{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{2\pi }}{3}
Now as we know that
tan1A+cot1A=π2{\tan ^{ - 1}}A + {\cot ^{ - 1}}A = \dfrac{\pi }{2}
tan1A=π2cot1A\Rightarrow {\tan ^{ - 1}}A = \dfrac{\pi }{2} - {\cot ^{ - 1}}A so use this property in above equation we have,
π2cot1x+π2cot1y=2π3\Rightarrow \dfrac{\pi }{2} - {\cot ^{ - 1}}x + \dfrac{\pi }{2} - {\cot ^{ - 1}}y = \dfrac{{2\pi }}{3}
Now simplify the above equation we have,
π2+π22π3=cot1x+cot1y\Rightarrow \dfrac{\pi }{2} + \dfrac{\pi }{2} - \dfrac{{2\pi }}{3} = {\cot ^{ - 1}}x + {\cot ^{ - 1}}y
cot1x+cot1y=π2π3\Rightarrow {\cot ^{ - 1}}x + {\cot ^{ - 1}}y = \pi - \dfrac{{2\pi }}{3}
cot1x+cot1y=3π2π3=π3\Rightarrow {\cot ^{ - 1}}x + {\cot ^{ - 1}}y = \dfrac{{3\pi - 2\pi }}{3} = \dfrac{\pi }{3}
So this is the required answer.
Hence option (C) is correct.

Note – As we have some basic trigonometric identities like sin2x+cos2x=1 and 1 + tan2x=sec2x{\sin ^2}x + {\cos ^2}x = 1{\text{ and 1 + ta}}{{\text{n}}^2}x = {\sec ^2}x, in the similar way we have identities involving inverse trigonometric ratios like tan1A+cot1A=π2 and sin1x+cos1x=π2{\tan ^{ - 1}}A + {\cot ^{ - 1}}A = \dfrac{\pi }{2}{\text{ and si}}{{\text{n}}^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}. It is advised to remember these basic identities as it helps save a lot of time.