Question
Question: If the integral is given as \({{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{...
If the integral is given as Im=0∫4π(tanx)mdx, then I3+I5+I7+I9 is equal to
(A) 83
(B) 73
(C) 52
(D) 94
Solution
We solve this question by first writing (tanx)m as (tanx)m−2×(tanx)2 in the integral Im. Then we use the formula sec2x−tan2x=1 and write Im in terms of Im−2. Then we integrate the remaining term by assuming tanx=t and then converting the integral in terms of t and find the value of integral using the formula ∫xndx=n+1xn+1. Then we get a relation between Im and Im−2. Then we substitute the values m=5 and m=9 and then adding them we get the required value.
Complete step-by-step solution:
Let us consider the given integral, Im=0∫4π(tanx)mdx
Let us consider the formula,
am+n=am×an
Then we can write (tanx)m as
(tanx)m=(tanx)m−2×(tanx)2(tanx)m=(tanx)m−2×tan2x
So, we can write the integral as,
Im=0∫4π((tanx)m−2×tan2x)dx
Now, let us consider the formula for trigonometric identity,
⇒sec2x−tan2x=1⇒tan2x=sec2x−1
Using that we can write the integral as,
⇒Im=0∫4π((tanx)m−2×(sec2x−1))dx⇒Im=0∫4π((tanx)m−2sec2x−(tanx)m−2)dx⇒Im=0∫4π(tanx)m−2sec2xdx−0∫4π(tanx)m−2dx.............(1)
But we have that Im=0∫4π(tanx)mdx, so we can write 0∫4π(tanx)m−2dx as
Im−2=0∫4π(tanx)m−2dx
Substituting this value in the equation (1), we get