Solveeit Logo

Question

Question: If the integral is given as \({{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{...

If the integral is given as Im=0π4(tanx)mdx{{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}, then I3+I5+I7+I9{{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}} is equal to
(A) 38\dfrac{3}{8}
(B) 37\dfrac{3}{7}
(C) 25\dfrac{2}{5}
(D) 49\dfrac{4}{9}

Explanation

Solution

We solve this question by first writing (tanx)m{{\left( \tan x \right)}^{m}} as (tanx)m2×(tanx)2{{\left( \tan x \right)}^{m-2}}\times {{\left( \tan x \right)}^{2}} in the integral Im{{I}_{m}}. Then we use the formula sec2xtan2x=1{{\sec }^{2}}x-{{\tan }^{2}}x=1 and write Im{{I}_{m}} in terms of Im2{{I}_{m-2}}. Then we integrate the remaining term by assuming tanx=t\tan x=t and then converting the integral in terms of t and find the value of integral using the formula xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}. Then we get a relation between Im{{I}_{m}} and Im2{{I}_{m-2}}. Then we substitute the values m=5 and m=9 and then adding them we get the required value.

Complete step-by-step solution:
Let us consider the given integral, Im=0π4(tanx)mdx{{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}
Let us consider the formula,
am+n=am×an{{a}^{m+n}}={{a}^{m}}\times {{a}^{n}}
Then we can write (tanx)m{{\left( \tan x \right)}^{m}} as
(tanx)m=(tanx)m2×(tanx)2 (tanx)m=(tanx)m2×tan2x \begin{aligned} & {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\left( \tan x \right)}^{2}} \\\ & {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \\\ \end{aligned}
So, we can write the integral as,
Im=0π4((tanx)m2×tan2x)dx{{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \right)dx}
Now, let us consider the formula for trigonometric identity,
sec2xtan2x=1 tan2x=sec2x1 \begin{aligned} & \Rightarrow {{\sec }^{2}}x-{{\tan }^{2}}x=1 \\\ & \Rightarrow {{\tan }^{2}}x={{\sec }^{2}}x-1 \\\ \end{aligned}
Using that we can write the integral as,
Im=0π4((tanx)m2×(sec2x1))dx Im=0π4((tanx)m2sec2x(tanx)m2)dx Im=0π4(tanx)m2sec2xdx0π4(tanx)m2dx.............(1) \begin{aligned} & \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times \left( {{\sec }^{2}}x-1 \right) \right)dx} \\\ & \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}x-{{\left( \tan x \right)}^{m-2}} \right)dx} \\\ & \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}.............\left( 1 \right) \\\ \end{aligned}
But we have that Im=0π4(tanx)mdx{{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}, so we can write 0π4(tanx)m2dx\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx} as
Im2=0π4(tanx)m2dx{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}
Substituting this value in the equation (1), we get

& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-{{I}_{m-2}} \\\ & \Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}..........\left( 2 \right) \\\ \end{aligned}$$ Now let us consider the integral on the right-hand side of the equation (2), $$\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}$$ Let $\tan x=t$. Let us consider the formula for differentiating $$d\left( \tan x \right)={{\sec }^{2}}xdx$$ Then differentiating it using the above formula we get, ${{\sec }^{2}}xdx=dt$ When $x=0$, we get $t=\tan 0=0$. When $x=\dfrac{\pi }{4}$, we get $t=\tan \dfrac{\pi }{4}=1$. So, changing the variables in the integral from x to t we get, $$\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}$$ Now let us consider the formula for integration, $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ Using the above formula, we can solve our integral as, $$\begin{aligned} & \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left. \dfrac{{{t}^{m-1}}}{m-1} \right]_{0}^{1} \\\ & \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{{{1}^{m-1}}}{m-1}-\dfrac{{{0}^{m-1}}}{m-1} \right) \\\ & \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{1}{m-1}-\dfrac{0}{m-1} \right)=\dfrac{1}{m-1} \\\ \end{aligned}$$ So, we get $$\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}=\dfrac{1}{m-1}$$ Substituting this value in equation (2), we get $$\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\dfrac{1}{m-1}$$ So, we get that for any $m$, $$\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\dfrac{1}{m-1}..........\left( 3 \right)$$ Now we need to find the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$. Now let us divide it into two parts ${{I}_{3}}+{{I}_{5}}$ and ${{I}_{7}}+{{I}_{9}}$ Now let us consider ${{I}_{3}}+{{I}_{5}}$. I it similar to the value in the left-hand side of equation (3). So, let us substitute the value $m=5$, then we get, $$\begin{aligned} & \Rightarrow {{I}_{5}}+{{I}_{5-2}}=\dfrac{1}{5-1} \\\ & \Rightarrow {{I}_{5}}+{{I}_{3}}=\dfrac{1}{4}..............\left( 4 \right) \\\ \end{aligned}$$ Now let us consider ${{I}_{7}}+{{I}_{9}}$ and as it is also similar to equation (3), let us substitute the value $m=9$, then we get, $$\begin{aligned} & \Rightarrow {{I}_{9}}+{{I}_{9-2}}=\dfrac{1}{9-1} \\\ & \Rightarrow {{I}_{9}}+{{I}_{7}}=\dfrac{1}{8}..............\left( 5 \right) \\\ \end{aligned}$$ So, adding the equations (4) and (5) we get, $\begin{aligned} & \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{1}{4}+\dfrac{1}{8} \\\ & \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{3}{8} \\\ \end{aligned}$ **Hence, we get the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$ as $\dfrac{3}{8}$. Hence, the answer is Option A.** **Note:** We can also solve the value of ${{I}_{3}}$, ${{I}_{5}}$, ${{I}_{7}}$ and ${{I}_{9}}$ separately and add them to find the answer also. But it is a long and hectic way of solving the problem. The common mistake one makes is one might forget to change the limits when the variable is changed from x to t.