Solveeit Logo

Question

Question: If the integral \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=...

If the integral 12dx(x22x+4)32=kk+5\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{k}{k+5}, then find the value of kk.
(a) 1
(b) 2
(c) 3
(d) 4

Explanation

Solution

In this question, in order to the value of kk given that integral 12dx(x22x+4)32=kk+5\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{k}{k+5}, we have to first simplify the integrand by substituting x1=3tanyx-1=\sqrt{3}\tan y, then in the give integral the lower limit and upper limit of the variable xx should be changed yy by putting the value x=1x=1 and x=2x=2 in x1=3tanyx-1=\sqrt{3}\tan y to find the respective lower limit and upper limit of the variable when we are changing the variable from xx to yy. Also we have to determine the value of dxdx in terms of the variable yy and dydy. We will then evaluate the simplified integral in terms of variable yy.

Complete step by step answer:
Let II denote the integral 12dx(x22x+4)32\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}.
That is, let I=12dx(x22x+4)32...........(1)I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}...........(1).
Now first we will factorise the expression x22x+4{{x}^{2}}-2x+4 by splitting the terms.
Then we have

& {{x}^{2}}-2x+4={{x}^{2}}-2x+1+3 \\\ & ={{\left( x-1 \right)}^{2}}+3..........(2) \end{aligned}$$ Now on substituting the value of equation (2) in equation (1), we get $$I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{\left( x-1 \right)}^{2}}+3 \right)}^{\dfrac{3}{2}}}}}...........(3)$$ Now let us suppose that $$x-1=\sqrt{3}\tan y$$. Now on differentiate $$x-1=\sqrt{3}\tan y$$ where differentiation of $$\tan y$$ is equals to $${{\sec }^{2}}y$$ in order to determine the value of $$dx$$ in terms of the variable $$y$$ and $$dy$$, we will get $$dx=\sqrt{3}{{\sec }^{2}}ydy......(4)$$. Now we will evaluate the lower limit of the integral $$I$$ by the value $$x=1$$ in $$x-1=\sqrt{3}\tan y$$. Putting the value the value $$x=1$$ in $$x-1=\sqrt{3}\tan y$$ , we get $$\begin{aligned} & 1-1=\sqrt{3}\tan y \\\ & \Rightarrow 0=\sqrt{3}\tan y \\\ & \Rightarrow 0=\tan y \\\ \end{aligned}$$ Since we have $$\tan y=0$$ when $$y=0$$, thus the lower limit of the variable $$y$$ is $$0$$. We will now calculate the upper limit of the integral $$I$$ by the value $$x=2$$ in $$x-1=\sqrt{3}\tan y$$. Putting the value the value $$x=2$$ in $$x-1=\sqrt{3}\tan y$$ , we get $$\begin{aligned} & 2-1=\sqrt{3}\tan y \\\ & \Rightarrow 1=\sqrt{3}\tan y \\\ & \Rightarrow \tan y=\dfrac{1}{\sqrt{3}} \\\ \end{aligned}$$ Since we have $$\tan y=\dfrac{1}{\sqrt{3}}$$ when $$y=\dfrac{\pi }{6}$$, thus the lower limit of the variable $$y$$ is $$\dfrac{\pi }{6}$$. Now on equation (4) in equation (3) and by changing the lower limit and upper limit of variable $$y$$ in equation (3), we will get $$\begin{aligned} & I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{\left( x-1 \right)}^{2}}+3 \right)}^{\dfrac{3}{2}}}}} \\\ & =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left( 3{{\tan }^{2}}y+3 \right)}^{\dfrac{3}{2}}}}dy} \\\ & =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3\left( {{\tan }^{2}}y+1 \right) \right]}^{\dfrac{3}{2}}}}dy} \end{aligned}$$ Using $$1+{{\tan }^{2}}y={{\sec }^{2}}y$$ in the above integral, we get $$\begin{aligned} & I==\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3\left( {{\tan }^{2}}y+1 \right) \right]}^{\dfrac{3}{2}}}}dy} \\\ & =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3{{\sec }^{2}}y \right]}^{\dfrac{3}{2}}}}dy} \\\ & =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{3\sqrt{3}{{\sec }^{3}}y}dy} \\\ & =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3\sec y}dy} \end{aligned}$$ We will now use the identity $$\cos y=\dfrac{1}{\sec y}$$ in the above integral. That is on substituting $$\cos y=\dfrac{1}{\sec y}$$ in the above integral, we will have $$\begin{aligned} & I=\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3\sec y}dy} \\\ & =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3}\cos ydy} \\\ & =\dfrac{1}{3}\int\limits_{0}^{\dfrac{\pi }{6}}{\cos ydy} \\\ & =\dfrac{1}{3}\left[ \sin y \right]_{0}^{\dfrac{\pi }{6}} \\\ & =\dfrac{1}{3}\left[ \sin \dfrac{\pi }{6}-\sin 0 \right] \\\ & =\dfrac{1}{3}\left[ \dfrac{1}{2}-0 \right] \\\ & =\dfrac{1}{6} \end{aligned}$$ Therefore we have $$\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{1}{6}$$. But since it is given that $$\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{k}{k+5}$$, therefore we have $$\dfrac{k}{k+5}=\dfrac{1}{6}$$ By cross multiplication of the above equation, we get $$\begin{aligned} & 6k=k+5 \\\ & \Rightarrow 6k-k=5 \\\ & \Rightarrow 5k=5 \\\ & \Rightarrow k=1 \end{aligned}$$ Therefore we have that the value of $$k$$ is equal to 1. **So, the correct answer is “Option A”.** **Note:** In this problem, while evaluating the integrals $$\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}$$ we are changing the integral in terms of variable $$y$$ using $$x-1=\sqrt{3}\tan y$$. Please take care of the fact that while evaluating the integral in terms of variable $$y$$ we have to change everything from variable $$x$$ to $$y$$ including the lower limit and the upper limit of the integral.