Question
Question: If the integral \(\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=1-\...
If the integral 0∫3π2ksecθtanθ=1−21 , (k>0) then find the value of k.
Solution
We start solving this problem first by considering the left-hand side of the given equation. Then we take out 2k outside from the integral as it is a constant. We change tanθ and secθ in terms of sinθ and cosθ. Then we consider cosθ as some other variable t and we change the limits according to t. Then we solve the obtained integral. Hence, we get the value of k.
Complete step-by-step answer:
Let us consider the given equation 0∫3π2ksecθtanθ=1−21.................(1)
Now, we consider the left-hand side of the given equation, 0∫3π2ksecθtanθ.
Let us take out 2k outside from the integral as it is a constant.
0∫3π2ksecθtanθ=2k10∫3πsecθtanθ
Let us consider the formula, tanθ=cosθsinθ and secθ=cosθ1.
By using the above formula, we change tanθ and secθ in terms of sinθ and cosθ, we get,
0∫3π2ksecθtanθ=2k10∫3πsecθtanθ⇒0∫3π2ksecθtanθ=2k10∫3πcosθ1(cosθsinθ)⇒0∫3π2ksecθtanθ=2k10∫3πcosθsinθ×cosθ⇒0∫3π2ksecθtanθ=2k10∫3πcosθsinθ
Now, let us consider cosθ=t, by differentiating it on both the sides, we get,
−sinθdθ=dt⇒sinθdθ=−dt
Now, let us change the limits of the integral.
As the lower limit is 0 for θ, the lower limit of the new integral is t=cosθ=cos(0)=1 and
As the upper limit is 3π for θ, the upper limit for the new integral is t=cosθ=cos(3π)=21.
So, we get,
0∫3π2ksecθtanθ=2k11∫21t−1dt
Let us consider the formula, ∫x1=2x.
By using the above formula, we get,
0∫3π2ksecθtanθ=2k1[−2t]121⇒0∫3π2ksecθtanθ=2k−1[2t]121⇒0∫3π2ksecθtanθ=2k−1[221−21]⇒0∫3π2ksecθtanθ=2k−1[22−2]⇒0∫3π2ksecθtanθ=2k−1[2−2]⇒0∫3π2ksecθtanθ=2k−1[2−2]⇒0∫3π2ksecθtanθ=k−1[1−2]....................(2)
So, from equation (1) and equation (2), we get,
& \dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]=1-\dfrac{1}{\sqrt{2}} \\\ & \\\ & \Rightarrow \dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]=\dfrac{\sqrt{2}-1}{\sqrt{2}} \\\ & \\\ & \Rightarrow \dfrac{-1}{\sqrt{k}}=\dfrac{\sqrt{2}-1}{\sqrt{2}}\left( \dfrac{1}{1-\sqrt{2}} \right) \\\ & \\\ & \Rightarrow \dfrac{1}{\sqrt{k}}=\dfrac{1-\sqrt{2}}{\sqrt{2}}\left( \dfrac{1}{1-\sqrt{2}} \right) \\\ & \\\ & \Rightarrow \dfrac{1}{\sqrt{k}}=\dfrac{1}{\sqrt{2}} \\\ & \\\ & \Rightarrow k=2 \\\ \end{aligned}$$ Therefore, the value of $k$ is 2. Hence, the answer is 2. **Note:** The possibility of making a mistake in this problem is one may make a mistake by not changing the limits while changing the variable. For example, in this problem, while changing the variable from $\theta $ to $t$, we change the lower limit from 0 to 1 and upper limit from $\dfrac{\pi }{3}$ to $\dfrac{1}{2}$. Otherwise, we get the wrong answer.