Solveeit Logo

Question

Question: If the integral \(\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=1-\...

If the integral 0π3tanθ2ksecθ=112\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=1-\dfrac{1}{\sqrt{2}} , (k>0) then find the value of k.

Explanation

Solution

We start solving this problem first by considering the left-hand side of the given equation. Then we take out 2k\sqrt{2k} outside from the integral as it is a constant. We change tanθ\tan \theta and secθ\sec \theta in terms of sinθ\sin \theta and cosθ\cos \theta . Then we consider cosθ\cos \theta as some other variable tt and we change the limits according to tt. Then we solve the obtained integral. Hence, we get the value of kk.

Complete step-by-step answer:
Let us consider the given equation 0π3tanθ2ksecθ=112.................(1)\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=1-\dfrac{1}{\sqrt{2}}.................\left( 1 \right)
Now, we consider the left-hand side of the given equation, 0π3tanθ2ksecθ\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}.
Let us take out 2k\sqrt{2k} outside from the integral as it is a constant.
0π3tanθ2ksecθ=12k0π3tanθsecθ\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{\sec \theta }}}
Let us consider the formula, tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }.
By using the above formula, we change tanθ\tan \theta and secθ\sec \theta in terms of sinθ\sin \theta and cosθ\cos \theta , we get,
0π3tanθ2ksecθ=12k0π3tanθsecθ  0π3tanθ2ksecθ=12k0π3(sinθcosθ)1cosθ  0π3tanθ2ksecθ=12k0π3sinθcosθ×cosθ  0π3tanθ2ksecθ=12k0π3sinθcosθ \begin{aligned} & \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{\sec \theta }}} \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\left( \dfrac{\sin \theta }{\cos \theta } \right)}{\sqrt{\dfrac{1}{\cos \theta }}}} \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\sin \theta }{\cos \theta }\times \sqrt{\cos \theta }} \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\sin \theta }{\sqrt{\cos \theta }}} \\\ \end{aligned}

Now, let us consider cosθ=t\cos \theta =t, by differentiating it on both the sides, we get,
sinθdθ=dt sinθdθ=dt \begin{aligned} & -\sin \theta d\theta =dt \\\ & \Rightarrow \sin \theta d\theta =-dt \\\ \end{aligned}
Now, let us change the limits of the integral.
As the lower limit is 0 for θ\theta , the lower limit of the new integral is t=cosθ=cos(0)=1t=\cos \theta =\cos \left( 0 \right)=1 and
As the upper limit is π3\dfrac{\pi }{3} for θ\theta , the upper limit for the new integral is t=cosθ=cos(π3)=12t=\cos \theta =\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}.
So, we get,
0π3tanθ2ksecθ=12k1121tdt\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{1}^{\dfrac{1}{2}}{\dfrac{-1}{\sqrt{t}}dt}
Let us consider the formula, 1x=2x\int{\dfrac{1}{\sqrt{x}}}=2\sqrt{x}.
By using the above formula, we get,
0π3tanθ2ksecθ=12k[2t]112  0π3tanθ2ksecθ=12k[2t]112  0π3tanθ2ksecθ=12k[21221]  0π3tanθ2ksecθ=12k[222]  0π3tanθ2ksecθ=12k[22]  0π3tanθ2ksecθ=12k[22]  0π3tanθ2ksecθ=1k[12]....................(2) \begin{aligned} & \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\left[ -2\sqrt{t} \right]_{1}^{\dfrac{1}{2}} \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ 2\sqrt{t} \right]_{1}^{\dfrac{1}{2}} \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ 2\sqrt{\dfrac{1}{2}}-2\sqrt{1} \right] \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ \dfrac{2}{\sqrt{2}}-2 \right] \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ \sqrt{2}-2 \right] \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2}\sqrt{k}}\left[ \sqrt{2}-2 \right] \\\ & \\\ & \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]....................\left( 2 \right) \\\ \end{aligned}

So, from equation (1) and equation (2), we get,

& \dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]=1-\dfrac{1}{\sqrt{2}} \\\ & \\\ & \Rightarrow \dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]=\dfrac{\sqrt{2}-1}{\sqrt{2}} \\\ & \\\ & \Rightarrow \dfrac{-1}{\sqrt{k}}=\dfrac{\sqrt{2}-1}{\sqrt{2}}\left( \dfrac{1}{1-\sqrt{2}} \right) \\\ & \\\ & \Rightarrow \dfrac{1}{\sqrt{k}}=\dfrac{1-\sqrt{2}}{\sqrt{2}}\left( \dfrac{1}{1-\sqrt{2}} \right) \\\ & \\\ & \Rightarrow \dfrac{1}{\sqrt{k}}=\dfrac{1}{\sqrt{2}} \\\ & \\\ & \Rightarrow k=2 \\\ \end{aligned}$$ Therefore, the value of $k$ is 2. Hence, the answer is 2. **Note:** The possibility of making a mistake in this problem is one may make a mistake by not changing the limits while changing the variable. For example, in this problem, while changing the variable from $\theta $ to $t$, we change the lower limit from 0 to 1 and upper limit from $\dfrac{\pi }{3}$ to $\dfrac{1}{2}$. Otherwise, we get the wrong answer.