Question
Mathematics Question on Integrals of Some Particular Functions
If the integral ∫cot2x−tan2xcos8x+1dx=Acos8x+k, where k is an arbitrary constant, then A is equal to:
A
−161
B
161
C
81
D
−81
Answer
−161
Explanation
Solution
LetI=∫cot2x−tan2xcos8x+1dx
Now,Dr=cot2x−tan2x=sin2xcos2x−cos2xsin2x
=sin2xcos2xcos22x−sin22x=sin4x2cos4x
∴I=∫sin4x2cos4x2cos24xdx=∫2cos4x2cos24x.sin4xdx
=21∫sin8xdx=−218cos8x+k
=−161.cos8x+k
Now,−161.cos8x+k=Acos8x+k
⇒A=−161