Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If the integral cos8x+1cot2xtan2xdx=Acos8x+k,\int \frac{cos 8x+1}{cot 2x-tan 2x} dx=A cos 8x+k, where kk is an arbitrary constant, then AA is equal to:

A

116-\frac{1}{16}

B

116\frac{1}{16}

C

18\frac{1}{8}

D

18-\frac{1}{8}

Answer

116-\frac{1}{16}

Explanation

Solution

LetI=cos8x+1cot2xtan2xdxLet I=\int \frac{cos \, 8x+1}{cot \, 2x-tan\, 2x} dx
Now,Dr=cot2xtan2x=cos2xsin2xsin2xcos2xNow, D^{r}=cot 2x -tan 2x =\frac{cos 2x}{sin 2x}-\frac{sin 2x}{cos 2x}
=cos22xsin22xsin2xcos2x=2cos4xsin4x=\frac{cos^{2}2x-sin^{2} 2x}{sin 2x cos 2x}=\frac{2 cos 4x}{sin 4x}
I=2cos24x2cos4xsin4xdx=2cos24x.sin4x2cos4xdx\therefore I=\int \frac{2 cos ^{2} 4x}{\frac{2 cos 4x}{sin 4x}} dx=\int \frac{2 cos ^{2}4x. sin 4x}{2 cos 4x} dx
=12sin8xdx=12cos8x8+k=\frac{1}{2} \int sin 8x dx=-\frac{1}{2} \frac{cos 8x}{8}+k
=116.cos8x+k=-\frac{1}{16}. cos 8x +k
Now,116.cos8x+k=Acos8x+kNow, -\frac{1}{16}. cos 8x+k=A cos 8x+k
A=116\Rightarrow A=-\frac{1}{16}