Question
Question: If the integral, \(\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \rig...
If the integral, ∫tanx−25tanxdx=x+aln∣sinx−2cosx∣+k, then a is equal to:
(a) 1
(b) -2
(c) -1
(d) 2
Solution
In this particular question use the concept that tan x = (sin x/cos x) so according to this property simplify the integral then write the numerator of the simplified integral as 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)}, then separate the integral so use these concepts to reach the solution of the question.
Complete step-by-step answer :
Given integral
∫tanx−25tanxdx=x+aln∣sinx−2cosx∣+k
Consider the LHS of the above equation we have,
⇒∫tanx−25tanxdx
Let, I=∫tanx−25tanxdx
Now as we know that tan x = (sin x/cos x) so use this property in the above equation we have,
Let, I=∫cosxsinx−25(cosxsinx)dx
Now simplify it we have,
⇒I=∫sinx−2cosx5sinxdx
Now 5 sin x is written as, 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)} so apply this in the above integral we have,
\Rightarrow I = \int {\dfrac{{\left\\{ {\left( {\sin x - 2\cos x} \right) + 2\left( {\cos x + 2\sin x} \right)} \right\\}}}{{\sin x - 2\cos x}}dx}
Now separate the integral we have,
⇒I=∫sinx−2cosxsinx−2cosxdx+2∫sinx−2cosxcosx+2sinxdx
Now simplify it we have,
⇒I=∫1dx+2∫sinx−2cosxcosx+2sinxdx.................. (1)
Now let, sinx−2cosx=t................ (2)
Now differentiate equation (2) w.r.t x we have,
⇒dxd(sinx−2cosx)=dxdt
Now as we know that dxdsinx=cosx,dxdcosx=−sinx so we have,
⇒(cosx+2sinx)=dxdt
⇒(cosx+2sinx)dx=dt.................... (3)
Now substitute the values from equation (2) and (3) in equation (1) we have,
⇒I=∫1dx+2∫t1dt
Now as we know that ∫x1dx=ln∣x∣+k,∫1dx=x+k, where k is some arbitrary integration constant so we have,
⇒I=x+2ln∣t∣+k
Now substitute the value of k in the above equation we have,
⇒I=x+2ln∣sinx−2cosx∣+k
⇒∫tanx−25tanxdx=x+2ln∣sinx−2cosx∣+k
Now on comparing with, ∫tanx−25tanxdx=x+aln∣sinx−2cosx∣+k we have,
⇒a=2
So this is the required answer.
Hence option (d) is the correct answer.
Note : Given integral
∫tanx−25tanxdx=x+aln∣sinx−2cosx∣+k
Consider the LHS of the above equation we have,
⇒∫tanx−25tanxdx
Let, I=∫tanx−25tanxdx
Now as we know that tan x = (sin x/cos x) so use this property in the above equation we have,
Let, I=∫cosxsinx−25(cosxsinx)dx
Now simplify it we have,
⇒I=∫sinx−2cosx5sinxdx
Now 5 sin x is written as, 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)} so apply this in the above integral we have,
\Rightarrow I = \int {\dfrac{{\left\\{ {\left( {\sin x - 2\cos x} \right) + 2\left( {\cos x + 2\sin x} \right)} \right\\}}}{{\sin x - 2\cos x}}dx}
Now separate the integral we have,
⇒I=∫sinx−2cosxsinx−2cosxdx+2∫sinx−2cosxcosx+2sinxdx
Now simplify it we have,
⇒I=∫1dx+2∫sinx−2cosxcosx+2sinxdx.................. (1)
Now let, sinx−2cosx=t................ (2)
Now differentiate equation (2) w.r.t x we have,
⇒dxd(sinx−2cosx)=dxdt
Now as we know that dxdsinx=cosx,dxdcosx=−sinx so we have,
⇒(cosx+2sinx)=dxdt
⇒(cosx+2sinx)dx=dt.................... (3)
Now substitute the values from equation (2) and (3) in equation (1) we have,
⇒I=∫1dx+2∫t1dt
Now as we know that ∫x1dx=ln∣x∣+k,∫1dx=x+k, where k is some arbitrary integration constant so we have,
⇒I=x+2ln∣t∣+k
Now substitute the value of k in the above equation we have,
⇒I=x+2ln∣sinx−2cosx∣+k
⇒∫tanx−25tanxdx=x+2ln∣sinx−2cosx∣+k
Now on comparing with, ∫tanx−25tanxdx=x+aln∣sinx−2cosx∣+k we have,
⇒a=2
So this is the required answer.
Hence option (d) is the correct answer.