Solveeit Logo

Question

Question: If the integral, \(\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \rig...

If the integral, 5tanxtanx2dx=x+alnsinx2cosx+k\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} , then a is equal to:
(a)\left( a \right) 1
(b)\left( b \right) -2
(c)\left( c \right) -1
(d)\left( d \right) 2

Explanation

Solution

In this particular question use the concept that tan x = (sin x/cos x) so according to this property simplify the integral then write the numerator of the simplified integral as 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)}, then separate the integral so use these concepts to reach the solution of the question.

Complete step-by-step answer :
Given integral
5tanxtanx2dx=x+alnsinx2cosx+k\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k}
Consider the LHS of the above equation we have,
5tanxtanx2dx\Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx}
Let, I=5tanxtanx2dxI = \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx}
Now as we know that tan x = (sin x/cos x) so use this property in the above equation we have,
Let, I=5(sinxcosx)sinxcosx2dxI = \int {\dfrac{{5\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\dfrac{{\sin x}}{{\cos x}} - 2}}dx}
Now simplify it we have,
I=5sinxsinx2cosxdx\Rightarrow I = \int {\dfrac{{5\sin x}}{{\sin x - 2\cos x}}dx}
Now 5 sin x is written as, 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)} so apply this in the above integral we have,
\Rightarrow I = \int {\dfrac{{\left\\{ {\left( {\sin x - 2\cos x} \right) + 2\left( {\cos x + 2\sin x} \right)} \right\\}}}{{\sin x - 2\cos x}}dx}
Now separate the integral we have,
I=sinx2cosxsinx2cosxdx+2cosx+2sinxsinx2cosxdx\Rightarrow I = \int {\dfrac{{\sin x - 2\cos x}}{{\sin x - 2\cos x}}dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx}
Now simplify it we have,
I=1dx+2cosx+2sinxsinx2cosxdx\Rightarrow I = \int {1dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx}.................. (1)
Now let, sinx2cosx=t\sin x - 2\cos x = t................ (2)
Now differentiate equation (2) w.r.t x we have,
ddx(sinx2cosx)=dtdx\Rightarrow \dfrac{d}{{dx}}\left( {\sin x - 2\cos x} \right) = \dfrac{{dt}}{{dx}}
Now as we know that ddxsinx=cosx,ddxcosx=sinx\dfrac{d}{{dx}}\sin x = \cos x,\dfrac{d}{{dx}}\cos x = - \sin x so we have,
(cosx+2sinx)=dtdx\Rightarrow \left( {\cos x + 2\sin x} \right) = \dfrac{{dt}}{{dx}}
(cosx+2sinx)dx=dt\Rightarrow \left( {\cos x + 2\sin x} \right)dx = dt.................... (3)
Now substitute the values from equation (2) and (3) in equation (1) we have,
I=1dx+21tdt\Rightarrow I = \int {1dx} + 2\int {\dfrac{1}{t}dt}
Now as we know that 1xdx=lnx+k,1dx=x+k\int {\dfrac{1}{x}dx} = \ln \left| x \right| + k,\int {1dx} = x + k, where k is some arbitrary integration constant so we have,
I=x+2lnt+k\Rightarrow I = x + 2\ln \left| t \right| + k
Now substitute the value of k in the above equation we have,
I=x+2lnsinx2cosx+k\Rightarrow I = x + 2\ln \left| {\sin x - 2\cos x} \right| + k
5tanxtanx2dx=x+2lnsinx2cosx+k\Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + 2\ln \left| {\sin x - 2\cos x} \right| + k}
Now on comparing with, 5tanxtanx2dx=x+alnsinx2cosx+k\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} we have,
a=2\Rightarrow a = 2
So this is the required answer.
Hence option (d) is the correct answer.

Note : Given integral
5tanxtanx2dx=x+alnsinx2cosx+k\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k}
Consider the LHS of the above equation we have,
5tanxtanx2dx\Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx}
Let, I=5tanxtanx2dxI = \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx}
Now as we know that tan x = (sin x/cos x) so use this property in the above equation we have,
Let, I=5(sinxcosx)sinxcosx2dxI = \int {\dfrac{{5\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\dfrac{{\sin x}}{{\cos x}} - 2}}dx}
Now simplify it we have,
I=5sinxsinx2cosxdx\Rightarrow I = \int {\dfrac{{5\sin x}}{{\sin x - 2\cos x}}dx}
Now 5 sin x is written as, 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)} so apply this in the above integral we have,
\Rightarrow I = \int {\dfrac{{\left\\{ {\left( {\sin x - 2\cos x} \right) + 2\left( {\cos x + 2\sin x} \right)} \right\\}}}{{\sin x - 2\cos x}}dx}
Now separate the integral we have,
I=sinx2cosxsinx2cosxdx+2cosx+2sinxsinx2cosxdx\Rightarrow I = \int {\dfrac{{\sin x - 2\cos x}}{{\sin x - 2\cos x}}dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx}
Now simplify it we have,
I=1dx+2cosx+2sinxsinx2cosxdx\Rightarrow I = \int {1dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx}.................. (1)
Now let, sinx2cosx=t\sin x - 2\cos x = t................ (2)
Now differentiate equation (2) w.r.t x we have,
ddx(sinx2cosx)=dtdx\Rightarrow \dfrac{d}{{dx}}\left( {\sin x - 2\cos x} \right) = \dfrac{{dt}}{{dx}}
Now as we know that ddxsinx=cosx,ddxcosx=sinx\dfrac{d}{{dx}}\sin x = \cos x,\dfrac{d}{{dx}}\cos x = - \sin x so we have,
(cosx+2sinx)=dtdx\Rightarrow \left( {\cos x + 2\sin x} \right) = \dfrac{{dt}}{{dx}}
(cosx+2sinx)dx=dt\Rightarrow \left( {\cos x + 2\sin x} \right)dx = dt.................... (3)
Now substitute the values from equation (2) and (3) in equation (1) we have,
I=1dx+21tdt\Rightarrow I = \int {1dx} + 2\int {\dfrac{1}{t}dt}
Now as we know that 1xdx=lnx+k,1dx=x+k\int {\dfrac{1}{x}dx} = \ln \left| x \right| + k,\int {1dx} = x + k, where k is some arbitrary integration constant so we have,
I=x+2lnt+k\Rightarrow I = x + 2\ln \left| t \right| + k
Now substitute the value of k in the above equation we have,
I=x+2lnsinx2cosx+k\Rightarrow I = x + 2\ln \left| {\sin x - 2\cos x} \right| + k
5tanxtanx2dx=x+2lnsinx2cosx+k\Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + 2\ln \left| {\sin x - 2\cos x} \right| + k}
Now on comparing with, 5tanxtanx2dx=x+alnsinx2cosx+k\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} we have,
a=2\Rightarrow a = 2
So this is the required answer.
Hence option (d) is the correct answer.