Solveeit Logo

Question

Mathematics Question on integral

If the integral 5250π2sin2xcos112x(1+cos52x)12dx525 \int_0^{\frac{\pi}{2}} \sin 2x \cos^{\frac{11}{2}} x \left( 1 + \cos^{\frac{5}{2}} x \right)^{\frac{1}{2}} \, dx is equal to (n264),\left( n \sqrt{2} - 64 \right), then nn is equal to ______

Answer

Consider:

I=0π2525sin2xcos112x(1+cos52x)12dxI = \int_{0}^{\frac{\pi}{2}} 525 \sin 2x \cdot \cos^{\frac{11}{2}} x \left(1 + \cos^{\frac{5}{2}} x \right)^{\frac{1}{2}} dx

Substitute cosx=t2\cos x = t^2, hence sinxdx=2tdt\sin x dx = -2t dt:

I=105254t4t112(1+t52)12(2dt)I = \int_{1}^{0} 525 \cdot 4t^4 \cdot t^{\frac{11}{2}} \left(1 + t^{\frac{5}{2}}\right)^{\frac{1}{2}} (-2 dt)

Rearranging:

I=401t41+t5dtI = 4 \int_{0}^{1} t^4 \sqrt{1 + t^5} dt

Substitute 1+t5=k21 + t^5 = k^2:

5t4dt=2kdkt4dt=25kdk5t^4 dt = 2k dk \quad \Rightarrow \quad t^4 dt = \frac{2}{5} k dk

Changing limits and integrating yields:

I=further evaluation leading to85(summation terms)I = \text{further evaluation leading to} \, \frac{8}{5} \cdot (\text{summation terms})

Resulting in:

I=176264I = 176\sqrt{2} - 64