Solveeit Logo

Question

Question: If the inequality \(\frac{mx^{2} + 3x + 4}{x^{2} + 2x + 2} < 5\) is satisfied for all x ∈ R, then...

If the inequality mx2+3x+4x2+2x+2<5\frac{mx^{2} + 3x + 4}{x^{2} + 2x + 2} < 5 is satisfied for all x ∈ R, then

A

1 < m < 5

B

–1 < m < 5

C

1< m < 6

D

m <7124\frac{71}{24}

Answer

m <7124\frac{71}{24}

Explanation

Solution

We have x2 + 2x + 2 = (x + 1)2 + 1 > 0, ∀ x ∈ R.

Therefore, mx2+3x+4x2+2x+2<5\frac{mx^{2} + 3x + 4}{x^{2} + 2x + 2} < 5 ⇒ mx2 + 3x + 4 < 5(x2 + 2x + 2)

⇒ (m – 5)x2 – 7x – 6 < 0, ∀ x ∈ R.

This is possible if D = b2 – 4ac = 49 + 24(m – 5) < 0 and

m – 5 < 0

⇒ m < 7124\frac{71}{24}