Question
Question: If the inequality \(\frac{mx^{2} + 3x + 4}{x^{2} + 2x + 2} < 5\) is satisfied for all x ∈ R, then...
If the inequality x2+2x+2mx2+3x+4<5 is satisfied for all x ∈ R, then
A
1 < m < 5
B
–1 < m < 5
C
1< m < 6
D
m <2471
Answer
m <2471
Explanation
Solution
We have x2 + 2x + 2 = (x + 1)2 + 1 > 0, ∀ x ∈ R.
Therefore, x2+2x+2mx2+3x+4<5 ⇒ mx2 + 3x + 4 < 5(x2 + 2x + 2)
⇒ (m – 5)x2 – 7x – 6 < 0, ∀ x ∈ R.
This is possible if D = b2 – 4ac = 49 + 24(m – 5) < 0 and
m – 5 < 0
⇒ m < 2471