Solveeit Logo

Question

Question: If the <img src="https://cdn.pureessence.tech/canvas_129.png?top_left_x=1200&top_left_y=947&width=30...

If the and terms of a G.P. be a,b,ca , b , c respectively, then the relation between a,b,ca , b , c is.

A

b=a+c2b = \frac { a + c } { 2 }

B

a2=bca ^ { 2 } = b c

C

b2=acb ^ { 2 } = a c

D

c2=abc ^ { 2 } = a b

Answer

b2=acb ^ { 2 } = a c

Explanation

Solution

Let first term of G.P. =A= A and common ratio =r= r

We know that nthn ^ { t h }term of G.P. = Arn1A r ^ { n - 1 }

Now t4=a=Ar3,t7=b=Ar6t _ { 4 } = a = A r ^ { 3 } , t _ { 7 } = b = A r ^ { 6 }and t10=c=Ar9t _ { 10 } = c = A r ^ { 9 }

Relation b2=acb ^ { 2 } = a cis true because b2=(Ar6)2=A2r12b ^ { 2 } = \left( A r ^ { 6 } \right) ^ { 2 } = A ^ { 2 } r ^ { 12 } and ac=(Ar3)(Ar9)=A2r12a c = \left( A r ^ { 3 } \right) \left( A r ^ { 9 } \right) = A ^ { 2 } r ^ { 12 }

Aliter : As we know, if p,q,rp , q , r in A.P., then pth,qth,rthp ^ { t h } , q ^ { t h } , r ^ { t h } terms of a G.P. are always in G.P., therefore, a,b,ca , b , c will be in G.P. b2=acb ^ { 2 } = a c.