Solveeit Logo

Question

Question: If the imaginary part of the expression \(\frac{z–1}{e^{\theta i}}\) + \(\frac{e^{\theta i}}{z–1}\) ...

If the imaginary part of the expression z1eθi\frac{z–1}{e^{\theta i}} + eθiz1\frac{e^{\theta i}}{z–1} be zero, then the locus of z is –

A

A straight line parallel to x-axis

B

A parabola

C

A circle of radius 1

D

None of these

Answer

A circle of radius 1

Explanation

Solution

Sol. Let u = z1eθi\frac{z–1}{e^{\theta i}} Ž eθiz1\frac{e^{\theta i}}{z–1}= 14\frac{1}{4}.

Now (u+1u)\left( u + \frac{1}{u} \right)(uˉ+1uˉ)\left( \bar{u} + \frac{1}{\bar{u}} \right) = 0

Ž (u –uˉ\bar{u}) (11uuˉ)\left( 1–\frac{1}{u\bar{u}} \right) = 0

If u is not purely real, then uuˉu\bar{u}= 1

Ž z1eθi\left| \frac{z–1}{e^{\theta i}} \right|= 1 Ž |z – 1| = 1