Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

If the image of the point (4,5)(-4, 5) in the line x+2y=2x + 2y = 2 lies on the circle (x+4)2+(y3)2=r2(x + 4)^2 + (y - 3)^2 = r^2, then rr is equal to:

A

1

B

2

C

75

D

3

Answer

2

Explanation

Solution

The equation of the line is:

x+2y2=0.x + 2y - 2 = 0.
The image of a point (x1,y1)(x_1, y_1) in a line ax+by+c=0ax + by + c = 0 is given by:

xx1a=yy1b=2×ax1+by1+ca2+b2.\frac{x - x_1}{a} = \frac{y - y_1}{b} = -2 \times \frac{ax_1 + by_1 + c}{a^2 + b^2}.
Substitute (x1,y1)=(4,5)(x_1, y_1) = (-4, 5), a=1a = 1, b=2b = 2, c=2c = -2:

x+41=y52=2×1(4)+2(5)212+22.\frac{x + 4}{1} = \frac{y - 5}{2} = -2 \times \frac{1(-4) + 2(5) - 2}{1^2 + 2^2}.
Simplify:

x+41=y52=2×4+1021+4=2×45.\frac{x + 4}{1} = \frac{y - 5}{2} = -2 \times \frac{-4 + 10 - 2}{1 + 4} = -2 \times \frac{4}{5}.
Solve for xx and yy:

x+4=85    x=485=285.x + 4 = -\frac{8}{5} \implies x = -4 - \frac{8}{5} = -\frac{28}{5}. y5=165    y=5165=255165=95.y - 5 = -\frac{16}{5} \implies y = 5 - \frac{16}{5} = \frac{25}{5} - \frac{16}{5} = \frac{9}{5}.
The image of (4,5)(-4, 5) is (285,95)\left( -\frac{28}{5}, \frac{9}{5} \right).
Substitute this point into the circle equation (x+4)2+(y3)2=r2(x + 4)^2 + (y - 3)^2 = r^2: (285+4)2+(953)2=r2.\left( -\frac{28}{5} + 4 \right)^2 + \left( \frac{9}{5} - 3 \right)^2 = r^2.
Simplify each term:

285+4=285+205=85,-\frac{28}{5} + 4 = -\frac{28}{5} + \frac{20}{5} = -\frac{8}{5}, 953=95155=65.\frac{9}{5} - 3 = \frac{9}{5} - \frac{15}{5} = -\frac{6}{5}.
Substitute:

(85)2+(65)2=r2.\left( -\frac{8}{5} \right)^2 + \left( -\frac{6}{5} \right)^2 = r^2.
Simplify:

6425+3625=r2    10025=r2    r2=4.\frac{64}{25} + \frac{36}{25} = r^2 \implies \frac{100}{25} = r^2 \implies r^2 = 4.
Thus: r=2.r = 2.