Solveeit Logo

Question

Question: If the image of the point (2, 3) in the line $x+2y=6$ lies on the circle $\left(x-\frac{1}{5}\right)...

If the image of the point (2, 3) in the line x+2y=6x+2y=6 lies on the circle (x15)2+(y+35)2=r2\left(x-\frac{1}{5}\right)^2 + \left(y+\frac{3}{5}\right)^2 = r^2, then r2r^2 is equal to:

Answer

5

Explanation

Solution

  1. Reflect (2,3) across the line x+2y=6x + 2y = 6:

    • Write the line as x+2y6=0x + 2y - 6 = 0 (here, A=1A = 1, B=2B = 2, C=6C = -6).
    • The reflection formula for a point P=(x1,y1)P=(x_1, y_1) is: P=(x12A(Ax1+By1+C)A2+B2,y12B(Ax1+By1+C)A2+B2)P' = \left( x_1 - \frac{2A(Ax_1+By_1+C)}{A^2+B^2},\, y_1 - \frac{2B(Ax_1+By_1+C)}{A^2+B^2} \right)
    • For P=(2,3)P=(2,3): Ax1+By1+C=12+236=2+66=2,Ax_1+By_1+C = 1\cdot2 + 2\cdot3 - 6 = 2+6-6 = 2, A2+B2=12+22=5.A^2+B^2 = 1^2+2^2 = 5.
    • Thus, P=(22125,32225)=(245,385)=(65,75).P' = \left( 2 - \frac{2\cdot1 \cdot 2}{5},\, 3 - \frac{2\cdot2 \cdot 2}{5} \right) = \left(2-\frac{4}{5},\, 3-\frac{8}{5}\right) = \left(\frac{6}{5},\, \frac{7}{5}\right).
  2. Find r2r^2 such that PP' lies on the circle

    (x15)2+(y+35)2=r2.\left(x-\frac{1}{5}\right)^2 + \left(y+\frac{3}{5}\right)^2 = r^2.

    Substitute x=65x=\frac{6}{5} and y=75y=\frac{7}{5}:

    (6515)2+(75+35)2=(55)2+(105)2=12+22=1+4=5.\left(\frac{6}{5}-\frac{1}{5}\right)^2 + \left(\frac{7}{5}+\frac{3}{5}\right)^2 = \left(\frac{5}{5}\right)^2 + \left(\frac{10}{5}\right)^2 = 1^2 + 2^2 = 1 + 4 = 5.

    Hence, r2=5r^2 = 5.