Question
Question: If the image of the point (2, 3) in the line $x+2y=6$ lies on the circle $\left(x-\frac{1}{5}\right)...
If the image of the point (2, 3) in the line x+2y=6 lies on the circle (x−51)2+(y+53)2=r2, then r2 is equal to:

Answer
5
Explanation
Solution
-
Reflect (2,3) across the line x+2y=6:
- Write the line as x+2y−6=0 (here, A=1, B=2, C=−6).
- The reflection formula for a point P=(x1,y1) is: P′=(x1−A2+B22A(Ax1+By1+C),y1−A2+B22B(Ax1+By1+C))
- For P=(2,3): Ax1+By1+C=1⋅2+2⋅3−6=2+6−6=2, A2+B2=12+22=5.
- Thus, P′=(2−52⋅1⋅2,3−52⋅2⋅2)=(2−54,3−58)=(56,57).
-
Find r2 such that P′ lies on the circle
(x−51)2+(y+53)2=r2.Substitute x=56 and y=57:
(56−51)2+(57+53)2=(55)2+(510)2=12+22=1+4=5.Hence, r2=5.