Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If the image of the point (1,2,3)(1,\,-2,3) in the plane 2x+3yz=72x+3y-z=7 is the point (α,β,γ)(\alpha ,\beta ,\gamma ) then α+β+γ\alpha +\beta +\gamma is equal to

A

6-6

B

1010

C

88

D

4-4

Answer

1010

Explanation

Solution

Given points is (1,2,3)(1,\,-2,3) and plane is 2x+3yz=72x+3y-z=7
Equation of line passing through the point (1,2,3)(1,-2,3)
and perpendicular to the given plane is x12=y+23=z31=k\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{-1}=k [say]
\Rightarrow \left. \begin{matrix} x=2k+1 \\\ y=3k-2 \\\ z=-k+3 \\\ \end{matrix} \right\\} ..(i)
This is the common point for plane and line passing through the point
(1,2,3)(1,\,\,-2,\,\,3) .
\therefore 2(2k+1)+3(3k2)(k+3)=72(2k+1)+3(3k-2)-(-k+3)=7
\Rightarrow 4k+2+9k6+k3=74k+2+9k-6+k-3=7
\Rightarrow 14k7=714k=1414k-7=7\Rightarrow 14k=14
\Rightarrow k=1k=1 Then, from E (i), we get x=2×1+1=3x=2\times 1+1=3 y=3×12=1y=3\times 1-2=1 z=1+3=2z=-1+3=2
Given image of points
(1,2,3)(1,-2,3) is (α,β,γ).(\alpha ,\beta ,\gamma ).
\therefore α+12=3,β22=1,γ+32=2\frac{\alpha +1}{2}=3,\,\,\frac{\beta -2}{2}=1,\frac{\gamma +3}{2}=2 [ \because point (3,1,2)(3,1,2)
is the mid-point of the line joining
(1,2,3)(1,-2,3) and (α,β,γ](\alpha ,\beta ,\gamma ]
\Rightarrow α+1=6,β2=2,γ+3=4\alpha +1=6,\,\beta -2=2,\,\gamma +3=4
\Rightarrow α=5,β=4,γ=1\alpha =5,\beta =4,\gamma =1 Now, α+β+γ=5+4+1=10\alpha +\beta +\gamma =5+4+1=10