Solveeit Logo

Question

Question: If the given values are \(A+B=\dfrac{\pi }{3}\) and \(\cos A+\cos B=1\), then which following option...

If the given values are A+B=π3A+B=\dfrac{\pi }{3} and cosA+cosB=1\cos A+\cos B=1, then which following options are true:
(a) cos(AB)=13\cos \left( A-B \right)=\dfrac{1}{3}.
(b) cosAcosB=23\left| \cos A-\cos B \right|=\sqrt{\dfrac{2}{3}}.
(c) cos(AB)=13\cos \left( A-B \right)=\dfrac{-1}{3}.
(d) cosAcosB=123\left| \cos A-\cos B \right|=\dfrac{1}{2\sqrt{3}}.

Explanation

Solution

We use trigonometric transformation for cosA+cosB=1\cos A+\cos B=1. After transforming the equation we substitute the given value A+B=π3A+B=\dfrac{\pi }{3} in it and we do some suitable modifications to cosine function to find the value of cos(AB)\cos \left( A-B \right). Now, to find the value of cosAcosB\left| \cos A-\cos B \right|, we use trigonometric transformation for equation present inside the modulus. We calculate all the required values by using trigonometric identities to get the result.

Complete step-by-step solution:
We have given that the values are A+B=π3A+B=\dfrac{\pi }{3} and cosA+cosB=1\cos A+\cos B=1. We need to check which are the true among the given options.
Let us keep A+B=π3A+B=\dfrac{\pi }{3} as equation (1).
So, we have cosA+cosB=1\cos A+\cos B=1.
From trigonometric transformations we know that cosA+cosB=2cos(A+B2).cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right).\cos \left( \dfrac{A-B}{2} \right).
We have 2cos(A+B2).cos(AB2)=12\cos \left( \dfrac{A+B}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1.
From the equation we have a value A+B=π3A+B=\dfrac{\pi }{3}, we substitute this in the above equation.
We have 2cos(π32).cos(AB2)=12\cos \left( \dfrac{\dfrac{\pi }{3}}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1.
We have 2cos(π6).cos(AB2)=12\cos \left( \dfrac{\pi }{6} \right).\cos \left( \dfrac{A-B}{2} \right)=1.
We know the value of cos(π6)=32\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}.
We have 2.(32).cos(AB2)=12.\left( \dfrac{\sqrt{3}}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1.
We have 3.cos(AB2)=1\sqrt{3}.\cos \left( \dfrac{A-B}{2} \right)=1.
We have cos(AB2)=13\cos \left( \dfrac{A-B}{2} \right)=\dfrac{1}{\sqrt{3}} -------(2).
Let us square equation (2) on both sides.
We have cos2(AB2)=(13)2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)={{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}.
We have cos2(AB2)=13{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{1}{3}.
Let us multiply both sides with ‘2’.
We have 2cos2(AB2)=2×132{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=2\times \dfrac{1}{3}.
We have 2cos2(AB2)=232{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{2}{3}.
Let us subtract both sides with ‘1’.
We have 2cos2(AB2)1=2312{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)-1=\dfrac{2}{3}-1.
We have 2cos2(AB2)1=132{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)-1=\dfrac{-1}{3}.
We know that cos(2θ)=2cos2(θ)1\cos \left( 2\theta \right)=2{{\cos }^{2}}\left( \theta \right)-1.
We have cos(2×AB2)=13\cos \left( 2\times \dfrac{A-B}{2} \right)=\dfrac{-1}{3}.
We have cos(AB)=13\cos \left( A-B \right)=\dfrac{-1}{3}.
\therefore The value of cos(AB)=13\cos \left( A-B \right)=\dfrac{-1}{3} ------(3).
Now we need to find the value of cosAcosB\left| \cos A-\cos B \right| to check the remaining options.
We have cosAcosB\left| \cos A-\cos B \right| and from trigonometric transformations, we have cosAcosB=2.sin(A+B2).sin(AB2)\cos A-\cos B=-2.\sin \left( \dfrac{A+B}{2} \right).\sin \left( \dfrac{A-B}{2} \right).
We have cosAcosB=2.sin(A+B2).sin(AB2)\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{A+B}{2} \right).\sin \left( \dfrac{A-B}{2} \right) \right| -------(4).
Let us find the value of sin(AB2)\sin \left( \dfrac{A-B}{2} \right) first. From equation (2), we have got cos2(AB2)=13{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{1}{3}.
For any value of θ\theta , we have sin2(θ)=1cos2(θ){{\sin }^{2}}\left( \theta \right)=1-{{\cos }^{2}}\left( \theta \right).
So, we have sin2(AB2)=1cos2(AB2){{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=1-{{\cos }^{2}}\left( \dfrac{A-B}{2} \right).
sin2(AB2)=113{{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=1-\dfrac{1}{3}.
sin2(AB2)=23{{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{2}{3}.
sin(AB2)=23\sin \left( \dfrac{A-B}{2} \right)=\sqrt{\dfrac{2}{3}}.
We use sin(AB2)=23\sin \left( \dfrac{A-B}{2} \right)=\sqrt{\dfrac{2}{3}} and A+B=π3A+B=\dfrac{\pi }{3} in equation (4).
cosAcosB=2.sin(π32).23\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{\dfrac{\pi }{3}}{2} \right).\sqrt{\dfrac{2}{3}} \right|.
cosAcosB=2.sin(π6).23\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{\pi }{6} \right).\sqrt{\dfrac{2}{3}} \right|.
We know that sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}.
cosAcosB=2.(12).(23)\left| \cos A-\cos B \right|=\left| -2.\left( \dfrac{1}{2} \right).\left( \sqrt{\dfrac{2}{3}} \right) \right|.
cosAcosB=23\left| \cos A-\cos B \right|=\left| -\sqrt{\dfrac{2}{3}} \right|.
We know that x>0\left| x \right|>0.
So, we get cosAcosB=23\left| \cos A-\cos B \right|=\sqrt{\dfrac{2}{3}} -------(5).
From equations (3) and (5), we got cos(AB)=13\cos \left( A-B \right)=\dfrac{-1}{3} and cosAcosB=23\left| \cos A-\cos B \right|=\sqrt{\dfrac{2}{3}}.
\therefore The correct options are (b) and (c).

Note: Whenever we get problems that involve the sum of two trigonometric functions each of different angles, we start by using trigonometric transformation. We should use trigonometric identities and conversions of θ\theta to 2θ2\theta , wherever required throughout the problem.