Solveeit Logo

Question

Question: If the given inverse trigonometric identity holds true that is \({\sin ^{ - 1}}x - {\cos ^{ - 1}}x =...

If the given inverse trigonometric identity holds true that is sin1xcos1x=π6{\sin ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{6}, then solve for x?

Explanation

Solution

Hint – In this question use the inverse trigonometric identity of sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}, use this to put the value of cos1x{\cos ^{ - 1}}x in terms of sin1x{\sin ^{ - 1}}x in the given equation sin1xcos1x=π6{\sin ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{6}.

Complete step-by-step solution -
Given trigonometric equation is
sin1xcos1x=π6{\sin ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{6}........................ (1)
Now as we know that sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}
Therefore, cos1x=π2sin1x{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x
So substitute this value in equation (1) we have,
sin1x(π2sin1x)=π6\Rightarrow {\sin ^{ - 1}}x - \left( {\dfrac{\pi }{2} - {{\sin }^{ - 1}}x} \right) = \dfrac{\pi }{6}
Now simplify this equation we have,
sin1xπ2+sin1x=π6\Rightarrow {\sin ^{ - 1}}x - \dfrac{\pi }{2} + {\sin ^{ - 1}}x = \dfrac{\pi }{6}
2sin1x=π6+π2=4π6=2π3\Rightarrow 2{\sin ^{ - 1}}x = \dfrac{\pi }{6} + \dfrac{\pi }{2} = \dfrac{{4\pi }}{6} = \dfrac{{2\pi }}{3}
sin1x=π3\Rightarrow {\sin ^{ - 1}}x = \dfrac{\pi }{3}
x=sinπ3=sin600=32\Rightarrow x = \sin \dfrac{\pi }{3} = \sin {60^0} = \dfrac{{\sqrt 3 }}{2}
So this is the required value of x.
So this is the required answer.

Note – Inverse trigonometric functions are the inverse of the trigonometric functions (with suitably restricted domains). Specifically they are the inverse of sine, cosine, tangent, cotangent, secant and cosecant functions and are used to obtain an angle from any of the angle’s trigonometric ratios. It is advised to remember the basic inverse trigonometric identities as it helps solving problems of this kind.