Solveeit Logo

Question

Question: If the given expression is \[y={{x}^{x}}+{{\left( \sin x \right)}^{\cot x}}\]. Find \[\dfrac{dy}{dx}...

If the given expression is y=xx+(sinx)cotxy={{x}^{x}}+{{\left( \sin x \right)}^{\cot x}}. Find dydx\dfrac{dy}{dx}.

Explanation

Solution

Here first of all take xx=u{{x}^{x}}=u and (sinx)cotx=v{{\left( \sin x \right)}^{\cot x}}=v to get dydx=dudx+dvdx\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}. Now to get dydx\dfrac{dy}{dx}, separately differentiate u and v and substitute it in the expression of dydx\dfrac{dy}{dx}. Also, for u(x)=[f(x)]g(x)u\left( x \right)={{\left[ f\left( x \right) \right]}^{g\left( x \right)}}, always first take log on both sides and then differentiate.

Complete step-by-step answer :
We are given that y=xx+(sinx)cotxy={{x}^{x}}+{{\left( \sin x \right)}^{\cot x}}. We have to find the value of dydx\dfrac{dy}{dx}.
Let us first consider the function given in the question.
y=xx+(sinx)cotxy={{x}^{x}}+{{\left( \sin x \right)}^{\cot x}}
Here, let us assume xx=u{{x}^{x}}=u and (sinx)cotx=v{{\left( \sin x \right)}^{\cot x}}=v
So, we get, y = u + v
By differentiating both sides of the above equation with respect to x, we get,
dydx=dudx+dvdx....(i)\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}....\left( i \right)
Let us consider the function xx{{x}^{x}}, that is
u=xxu={{x}^{x}}
By taking log on both sides, we get,
logu=logxx\log u=\log {{x}^{x}}
We know that logmn=nlogm\log {{m}^{n}}=n\log m. By applying this in the RHS of the above equation, we get,
logu=xlogx\log u=x\log x
Now, by differentiating both the sides with respect to x, we get,
ddx(logu)=ddx(xlogx)\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( x\log x \right)
We know that, by chain rule if y = f (u), then dydx=f(u)dudx\dfrac{dy}{dx}={{f}^{'}}\left( u \right)\dfrac{du}{dx}
Also, we know that ddx(logx)=1x\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}. By applying these in the LHS of the above equation, we get,
1ududx=ddx(xlogx)\dfrac{1}{u}\dfrac{du}{dx}=\dfrac{d}{dx}\left( x\log x \right)
We know that by product rule ddx(f(x).g(x))=f.dgdx+g.dfdx\dfrac{d}{dx}\left( f\left( x \right).g\left( x \right) \right)=f.\dfrac{dg}{dx}+g.\dfrac{df}{dx}
By applying this in the RHS of the above equation, we get,
1ududx=xddx(logx)+logxddx(x)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( x \right)
1ududx=x.(1x)+logx.(1)\Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=x.\left( \dfrac{1}{x} \right)+\log x.\left( 1 \right)
By multiplying ‘u’ on both sides, we get,
dudx=u(1+logx)\dfrac{du}{dx}=u\left( 1+\log x \right)
By substituting the value of u=xxu={{x}^{x}}. We get,
dudx=xx(1+logx)....(ii)\dfrac{du}{dx}={{x}^{x}}\left( 1+\log x \right)....\left( ii \right)
Now, let us consider the function (sinx)cotx{{\left( \sin x \right)}^{\cot x}}, that is
v=(sinx)cotxv={{\left( \sin x \right)}^{\cot x}}
By taking log on both sides, we get,
logv=log(sinx)cotx\log v=\log {{\left( \sin x \right)}^{\cot x}}
We know that logmn=nlogm\log {{m}^{n}}=n\log m. By applying this in the RHS of the above equation, we get,
logv=cotx.log(sinx)\log v=\cot x.\log \left( \sin x \right)
Now, by differentiating both sides with respect to x, we get,
ddx(logv)=ddx[cotx.log(sinx)]\dfrac{d}{dx}\left( \log v \right)=\dfrac{d}{dx}\left[ \cot x.\log \left( \sin x \right) \right]
Now, by applying chain rule in LHS of the above equation, we get,
1vdvdx=ddx[cotx.log(sinx)]\dfrac{1}{v}\dfrac{dv}{dx}=\dfrac{d}{dx}\left[ \cot x.\log \left( \sin x \right) \right]
Now, by applying product rule in RHS of the above equation, we get,
1vdvdx=cotx.ddx[log(sinx)]+[log(sinx)].ddx(cotx)\dfrac{1}{v}\dfrac{dv}{dx}=\cot x.\dfrac{d}{dx}\left[ \log \left( \sin x \right) \right]+\left[ \log \left( \sin x \right) \right].\dfrac{d}{dx}\left( \cot x \right)
By applying chain rule in the RHS of the above equation, we get,
1vdvdx=(cotx).(1sinx)ddx(sinx)+[log(sinx)].ddx(cotx)\dfrac{1}{v}\dfrac{dv}{dx}=\left( \cot x \right).\left( \dfrac{1}{\sin x} \right)\dfrac{d}{dx}\left( \sin x \right)+\left[ \log \left( \sin x \right) \right].\dfrac{d}{dx}\left( \cot x \right)
We know that ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x and ddx(cotx)=(cosec2x)\dfrac{d}{dx}\left( \cot x \right)=\left( -{{\operatorname{cosec}}^{2}}x \right).
By applying these in the above equation, we get,
1v.dvdx=(cotx)sinx.(cosx)+[log(sinx)](cosec2x)\dfrac{1}{v}.\dfrac{dv}{dx}=\dfrac{\left( \cot x \right)}{\sin x}.\left( \cos x \right)+\left[ \log \left( \sin x \right) \right]\left( -{{\operatorname{cosec}}^{2}}x \right)
Now, by multiplying ‘v’ on both sides, we get,
dvdx=v(cotxsinx.cosx(cosec2x)log(sinx))\dfrac{dv}{dx}=v\left( \dfrac{\cot x}{\sin x}.\cos x-\left( {{\operatorname{cosec}}^{2}}x \right)\log \left( \sin x \right) \right)
By substituting v=log(sinx)cotxv=\log {{\left( \sin x \right)}^{\cot x}} and cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x, we get,
dvdx=log(sinx)cotx[(cotx)2(cosec2x).log(sinx)]\dfrac{dv}{dx}=\log {{\left( \sin x \right)}^{\cot x}}\left[ {{\left( \cot x \right)}^{2}}-\left( {{\operatorname{cosec}}^{2}}x \right).\log \left( \sin x \right) \right]
Or, dvdx=(cotx)log(sinx)[(cotx)2(cosec2x)log(sinx)]\dfrac{dv}{dx}=\left( \cot x \right)\log \left( \sin x \right)\left[ {{\left( \cot x \right)}^{2}}-\left( {{\operatorname{cosec}}^{2}}x \right)\log \left( \sin x \right) \right]
By taking (cotx)log(sinx)\left( \cot x \right)\log \left( \sin x \right) inside the bracket, we get,
dvdx=(cotx)3log(sinx)(cosec2x)(cotx)[log(sinx)]2....(iii)\dfrac{dv}{dx}={{\left( \cot x \right)}^{3}}\log \left( \sin x \right)-\left( {{\operatorname{cosec}}^{2}}x \right)\left( \cot x \right){{\left[ \log \left( \sin x \right) \right]}^{2}}....\left( iii \right)
Now by substituting values of dudx\dfrac{du}{dx} and dvdx\dfrac{dv}{dx} from equation (ii) and (iii) in equation (i), we get,
dydx=xx(1+logx)+[(cotx)3log(sinx)(cosec2x)(cotx)(log(sinx))2]\dfrac{dy}{dx}={{x}^{x}}\left( 1+\log x \right)+\left[ {{\left( \cot x \right)}^{3}}\log \left( \sin x \right)-\left( {{\operatorname{cosec}}^{2}}x \right)\left( \cot x \right){{\left( \log \left( \sin x \right) \right)}^{2}} \right]
Therefore, we have got the value of dydx\dfrac{dy}{dx}.

Note :Students are advised to always take the functions in parts and then differentiate it to avoid confusion in case of large functions. Also, many students make this mistake of calculating ddx(logv)=1v\dfrac{d}{dx}\left( \log v \right)=\dfrac{1}{v} and ddx(logu)=1u\dfrac{d}{dx}\left( \log u \right)=\dfrac{1}{u} but this is wrong because according to the chain rule, ddx(logv)=1v.dvdx\dfrac{d}{dx}\left( \log v \right)=\dfrac{1}{v}.\dfrac{dv}{dx} and ddx(logu)=1u.dudx\dfrac{d}{dx}\left( \log u \right)=\dfrac{1}{u}.\dfrac{du}{dx}. So this mistake must be avoided.