Solveeit Logo

Question

Question: If the geometric mean between \(a\) and \(b\) is \(\frac { a ^ { n + 1 } + b ^ { n + 1 } } { a ^...

If the geometric mean between aa and bb is an+1+bn+1an+bn\frac { a ^ { n + 1 } + b ^ { n + 1 } } { a ^ { n } + b ^ { n } }, then the value of n is.

A

1

B

–1/2

C

1/2

D

2

Answer

–1/2

Explanation

Solution

As given an+1+bn+1an+bn=(ab)1/2\frac { a ^ { n + 1 } + b ^ { n + 1 } } { a ^ { n } + b ^ { n } } = ( a b ) ^ { 1 / 2 }

\Rightarrow an+1an+1/2b1/2+bn+1a1/2bn+1/2=0a ^ { n + 1 } - a ^ { n + 1 / 2 } b ^ { 1 / 2 } + b ^ { n + 1 } - a ^ { 1 / 2 } b ^ { n + 1 / 2 } = 0

\Rightarrow (an+1/2bn+1/2)(a1/2b1/2)=0\left( a ^ { n + 1 / 2 } - b ^ { n + 1 / 2 } \right) \left( a ^ { 1 / 2 } - b ^ { 1 / 2 } \right) = 0

\Rightarrow an+1/2bn+1/2=0a ^ { n + 1 / 2 } - b ^ { n + 1 / 2 } = 0 (aba1/2b1/2)\left( \because a \neq b \Rightarrow a ^ { 1 / 2 } \neq b ^ { 1 / 2 } \right)

\Rightarrow (ab)n+1/2=1=(ab)0n+12=0n=12\left( \frac { a } { b } \right) ^ { n + 1 / 2 } = 1 = \left( \frac { a } { b } \right) ^ { 0 } \Rightarrow n + \frac { 1 } { 2 } = 0 \Rightarrow n = - \frac { 1 } { 2 }.