Solveeit Logo

Question

Mathematics Question on Differential equations

If the general solution of the differential equation (y)=yx+ϕ(xy)\left(\text{y}\right)^{'}=\frac{\text{y}}{\text{x}}+\phi\left(\frac{\text{x}}{\text{y}}\right) , for some function ϕ\phi , is given by ylncx=xyln\left|\right.\text{c}\text{x}\left|\right.=\text{x} , where c\text{c} is an arbitrary constant, then ϕ(2)\phi\left(2\right) is equal to ()here,(y)=dydx(y)=dydx\left(\right)\text{here} , \, \left(\text{y}\right)^{'}=\frac{d y}{d x}\left(\text{y}\right)^{'}=\frac{d y}{d x}

A

4-4

B

14- \frac{1}{4}

C

14\frac{1}{4}

D

44

Answer

14- \frac{1}{4}

Explanation

Solution

given:(y)=yx+ϕ(xy)\text{given} \text{:} \left(\text{y}\right)^{'} = \frac{\text{y}}{\text{x}} + \phi \left(\frac{\text{x}}{\text{y}}\right) As y ln(cx)=x?(y)ln(cx)+y1cxc=1\text{y ln} \left(\text{cx}\right) = \text{x} \, ? \, \left(\text{y}\right)^{'} \text{ln} \left(\text{cx}\right) + \text{y} \frac{1}{\text{cx}} \text{c} = 1 ?(y)(xy)+yx=1? \, \left(\text{y}\right)^{'} \left(\frac{\text{x}}{\text{y}}\right) + \frac{\text{y}}{\text{x}} = 1 ?1(yx)(xy)=(yx)+ϕ(xy)? \, \, \, \frac{1 - \left(\frac{\text{y}}{\text{x}}\right)}{\left(\frac{\text{x}}{\text{y}}\right)} = \left(\frac{\text{y}}{\text{x}}\right) + \phi \left(\frac{\text{x}}{\text{y}}\right) Put xy=2?1(12)(21)=(12)+ϕ(21)\frac{x}{y} = 2 \, ? \, \frac{1 - \left(\frac{1}{2}\right)}{\left(\frac{2}{1}\right)} = \left(\frac{1}{2}\right) + \phi \left(\frac{2}{1}\right) ?ϕ(2)=14? \, \, \, \phi \left(2\right) = - \frac{1}{4}