Solveeit Logo

Question

Question: If the functions \(p\left( x \right),q\left( x \right),r\left( x \right)\) are three polynomials of ...

If the functions p(x),q(x),r(x)p\left( x \right),q\left( x \right),r\left( x \right) are three polynomials of degree 2, then prove that
p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) \left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ \end{matrix} \right| is independent of x.

Explanation

Solution

To solve this question, we should the way to differentiate a determinant. Let us consider the whole determinant as f(x)f\left( x \right). For a function v(x)v\left( x \right) such that
v(x)=p(x)q(x)r(x) s(x)t(x)u(x) w(x)x(x)y(x) v\left( x \right)=\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ s\left( x \right) & t\left( x \right) & u\left( x \right) \\\ w\left( x \right) & x\left( x \right) & y\left( x \right) \\\ \end{matrix} \right|
v(x)v'\left( x \right) is defined as
v(x)=p(x)q(x)r(x) s(x)t(x)u(x) w(x)x(x)y(x) +p(x)q(x)r(x) s(x)t(x)u(x) w(x)x(x)y(x) +p(x)q(x)r(x) s(x)t(x)u(x) w(x)x(x)y(x) v'\left( x \right)=\left| \begin{matrix} p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ s\left( x \right) & t\left( x \right) & u\left( x \right) \\\ w\left( x \right) & x\left( x \right) & y\left( x \right) \\\ \end{matrix} \right|+\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ s'\left( x \right) & t'\left( x \right) & u'\left( x \right) \\\ w\left( x \right) & x\left( x \right) & y\left( x \right) \\\ \end{matrix} \right|+\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ s\left( x \right) & t\left( x \right) & u\left( x \right) \\\ w'\left( x \right) & x'\left( x \right) & y'\left( x \right) \\\ \end{matrix} \right|
Using this formula on the equation
f(x)=p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) f\left( x \right)=\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ \end{matrix} \right|
and the property that the third derivative of a second order polynomial is zero, we get that f(x)=0f'\left( x \right)=0.
This means that f(x) is a constant function and it doesn’t depend on x.

Complete step-by-step answer:
Let us consider a function v(x)v\left( x \right) such that,
v(x)=p(x)q(x)r(x) s(x)t(x)u(x) w(x)x(x)y(x) v\left( x \right)=\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ s\left( x \right) & t\left( x \right) & u\left( x \right) \\\ w\left( x \right) & x\left( x \right) & y\left( x \right) \\\ \end{matrix} \right|
Let us consider the derivative of v(x)v\left( x \right). v(x)v'\left( x \right) is defined as
v(x)=p(x)q(x)r(x) s(x)t(x)u(x) w(x)x(x)y(x) +p(x)q(x)r(x) s(x)t(x)u(x) w(x)x(x)y(x) +p(x)q(x)r(x) s(x)t(x)u(x) w(x)x(x)y(x) (1)v'\left( x \right)=\left| \begin{matrix} p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ s\left( x \right) & t\left( x \right) & u\left( x \right) \\\ w\left( x \right) & x\left( x \right) & y\left( x \right) \\\ \end{matrix} \right|+\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ s'\left( x \right) & t'\left( x \right) & u'\left( x \right) \\\ w\left( x \right) & x\left( x \right) & y\left( x \right) \\\ \end{matrix} \right|+\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ s\left( x \right) & t\left( x \right) & u\left( x \right) \\\ w'\left( x \right) & x'\left( x \right) & y'\left( x \right) \\\ \end{matrix} \right|\to \left( 1 \right)

Let us consider the determinant given in the question as f(x).
f(x)=p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) f\left( x \right)=\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ \end{matrix} \right|
Let us consider differentiating the function f(x), from equation-1, we get
f(x)=p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) +p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) +p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) (2)f'\left( x \right)=\left| \begin{matrix} p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ \end{matrix} \right|+\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ \end{matrix} \right|+\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\\ \end{matrix} \right|\to \left( 2 \right)
We know the property of determinants that the value of determinant having any two rows or columns equal is zero.
v(x)=p(x)q(x)r(x) p(x)q(x)r(x) w(x)x(x)y(x) =0v\left( x \right)=\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ w\left( x \right) & x\left( x \right) & y\left( x \right) \\\ \end{matrix} \right|=0
Using this property in equation-2, we get
In the determinant p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) \left| \begin{matrix} p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ \end{matrix} \right|, the corresponding terms of the first and second rows are equal. Similarly, in the determinant p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) \left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\\ \end{matrix} \right|, the terms of the second and third row are equal.

f(x)=0+0+p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x)  f(x)=p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) (3) \begin{aligned} & f'\left( x \right)=0+0+\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\\ \end{matrix} \right| \\\ & f'\left( x \right)=\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\\ \end{matrix} \right|\to \left( 3 \right) \\\ \end{aligned}
Let us consider a second order polynomial in x
h(x)=ax2+bx+ch(x)=a{{x}^{2}}+bx+c.
Differentiate h(x)h\left( x \right) until its third derivative.
h(x)=ax2+bx+c h(x)=2ax+b h(x)=2a h(x)=0 \begin{aligned} & h(x)=a{{x}^{2}}+bx+c \\\ & h'(x)=2ax+b \\\ & h''\left( x \right)=2a \\\ & h'''\left( x \right)=0 \\\ \end{aligned}
This tells us that the third derivative of any second order polynomial in x is zero.
Using this relation in equation-3, p(x), q(x), r(x) are second degree polynomials, we get
f(x)=p(x)q(x)r(x) p(x)q(x)r(x) 000 f'\left( x \right)=\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ 0 & 0 & 0 \\\ \end{matrix} \right|
We know that in a determinant, if any of the rows or columns has all zeros, the determinant value is also zero.
So, we get
f(x)=0f'(x)=0
Integrating on both sides with respect to x, we get
f(x)=0 f(x)=c \begin{aligned} & \int{f'(x)}=\int{0} \\\ & f\left( x \right)=c \\\ \end{aligned}
We got the value of f(x) as constant which means that the function f(x) is independent of x.
\therefore Hence proved the statement that f(x) is independent of x.

Note: Some students tend to expand the determinant and then try to differentiate the function which leads to a confusion. Instead using the above mentioned differentiation property reduces the complexity. After getting the first two determinants to zero, some students cannot proceed from f(x)=p(x)q(x)r(x) p(x)q(x)r(x) p(x)q(x)r(x) f'\left( x \right)=\left| \begin{matrix} p\left( x \right) & q\left( x \right) & r\left( x \right) \\\ p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\\ p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\\ \end{matrix} \right| as they overlook that all the functions p(x), q(x), r(x) are of second degree. So, each and every word in the question is important.