Solveeit Logo

Question

Mathematics Question on types of functions

If the functions f(x)=x33+2bx+ax22f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2} and g(x)=x33+ax+bx2,a2bg(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b have a common extreme point, then a+2b+7a+2 b+7 is equal to:

A

32\frac{3}{2}

B

3

C

6

D

4

Answer

6

Explanation

Solution

f′(x)=x2+2b+ax
g′(x)=x2+a+2bx
(2b−a)−x(2b−a)=0
∴x=1 is the common root
Put x=1 in f′(x)=0 or g′(x)=0
1+2b+a=0
7+2b+a=6
So, the correct option is (C) : 6