Solveeit Logo

Question

Question: If the function ƒ(x) = \(\lim_{m \rightarrow \infty}\left( \cos\frac{x}{m} \right)^{m}\) sin (x – 2)...

If the function ƒ(x) = limm(cosxm)m\lim_{m \rightarrow \infty}\left( \cos\frac{x}{m} \right)^{m} sin (x – 2) + a cos (x – 2), (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then –

A

a ∈ [8, 64]

B

a ∈ (0, 8]

C

a ∈ [64, ∞)

D

None of these

Answer

a ∈ [64, ∞)

Explanation

Solution

We have, x ∈ (4, 6)

⇒ 2 < x – 2 < 4

⇒ 8a<(x2)3a<64a\frac { 8 } { a } < \frac { ( x - 2 ) ^ { 3 } } { a } < \frac { 64 } { a }, a > 0

For ƒ(x) to be continuous and differentiable in (4, 6), [(x2)3a]\left[ \frac { ( x - 2 ) ^ { 3 } } { a } \right] must attain a constant value for x ∈ (4, 6)

Clearly, this is possible only when a ≥ 64

In that case, we have

ƒ(x) = a cos (x – 2) which is continuous and differentiable

∴ a ∈ [64, ∞)

Hence, (3) is the correct answer.