Solveeit Logo

Question

Question: If the function ƒ(x) = ax<sup>3</sup> + bx<sup>2</sup> + 11x – 6 satisfies conditions of Rolle’s the...

If the function ƒ(x) = ax3 + bx2 + 11x – 6 satisfies conditions of Rolle’s theorem in [1, 3] and ƒ ¢ (2+13)\left( 2 + \frac{1}{\sqrt{3}} \right) = 0, then values of a and b are respectively –

A

1, –6

B

–2, 1

C

–1, 12\frac{1}{2}

D

–1, 6

Answer

1, –6

Explanation

Solution

Here, ƒ(1) = ƒ(3) and ƒ ¢ (2+13)\left( 2 + \frac{1}{\sqrt{3}} \right) = 0

Ž a + b + 11 – 6 = 27a + 9b + 33 – 6

and 3a (2+13)2\left( 2 + \frac{1}{\sqrt{3}} \right)^{2} + 2b (2+13)\left( 2 + \frac{1}{\sqrt{3}} \right) + 11 = 0

Ž 26 a + 8b = – 22

and 3a (4+13+43)\left( 4 + \frac{1}{3} + \frac{4}{\sqrt{3}} \right) + 4b + 2b3\frac{2b}{\sqrt{3}} = –11

Ž 13a + 4b = – 11

and a (13 + 43\sqrt{3}) + b(4+23)\left( 4 + \frac{2}{\sqrt{3}} \right) = –11

Ž 13a + 4b = – 11 and 434\sqrt{3}a + 23\frac{2}{\sqrt{3}}b = 0

Ž 13a + 4b = –11 and 12a + 2b = 0

Ž 13a + 4b = –11 and 6a + b = 0

Solving we get, a = 1, b = –6.