Question
Question: If the function \(f(x) = x^{3} - 6x^{2} + ax + b\) satisfies Rolle's theorem in the interval [1, 3]a...
If the function f(x)=x3−6x2+ax+b satisfies Rolle's theorem in the interval [1, 3]and f′(323+1)=0 then
A
a=11
B
a=−6
C
a=6
D
a=1
Answer
a=11
Explanation
Solution
f(x)=x3−6x2+ax+b ⇒ f′(x)=3x2−12x+a
⇒ f′(c)=0 ⇒ f′(2+31)=0
⇒ 3(2+31)2−12(2+31)+a=0
⇒ 3(4+31+34)−12(2+31)+a=0
⇒ 12+1+43−24−43+a=0 ⇒ a=11.