Solveeit Logo

Question

Question: If the function \(f(x) = x^{3} - 6x^{2} + ax + b\) satisfies Rolle's theorem in the interval [1, 3]a...

If the function f(x)=x36x2+ax+bf(x) = x^{3} - 6x^{2} + ax + b satisfies Rolle's theorem in the interval [1, 3]and f(23+13)=0f^{'}\left( \frac{2\sqrt{3} + 1}{\sqrt{3}} \right) = 0 then

A

a=11a = 11

B

a=6a = - 6

C

a=6a = 6

D

a=1a = 1

Answer

a=11a = 11

Explanation

Solution

f(x)=x36x2+ax+bf(x) = x^{3} - 6x^{2} + ax + bf(x)=3x212x+af^{'}(x) = 3x^{2} - 12x + a

f(c)=0f^{'}(c) = 0f(2+13)=0f^{'}\left( 2 + \frac{1}{\sqrt{3}} \right) = 0

3(2+13)212(2+13)+a=03\left( 2 + \frac{1}{\sqrt{3}} \right)^{2} - 12\left( 2 + \frac{1}{\sqrt{3}} \right) + a = 0

3(4+13+43)12(2+13)+a=03\left( 4 + \frac{1}{3} + \frac{4}{\sqrt{3}} \right) - 12\left( 2 + \frac{1}{\sqrt{3}} \right) + a = 0

12+1+432443+a=012 + 1 + 4\sqrt{3} - 24 - 4\sqrt{3} + a = 0a=11a = 11.