Solveeit Logo

Question

Question: If the function \(f(x) = \left\{ \begin{matrix} (\cos x)^{1/x},x \neq 0 \\ k,x = 0 \end{matrix} \rig...

If the function f(x)={(cosx)1/x,x0k,x=0 f(x) = \left\{ \begin{matrix} (\cos x)^{1/x},x \neq 0 \\ k,x = 0 \end{matrix} \right.\ is continuous at x=0x = 0, then the value of k is

A

1

B

–1

C

0

D

e

Answer

1

Explanation

Solution

limx0(cosx)1/x=klimx01xlog(cosx)=logk\lim_{x \rightarrow 0}(\cos x)^{1/x} = k \Rightarrow \lim_{x \rightarrow 0}\frac{1}{x}\log(\cos x) = \log k

limx01xlimx0logcosx=logklimx01x×0=logekk=1\Rightarrow \lim_{x \rightarrow 0}\frac{1}{x}\lim_{x \rightarrow 0}{logcos}x = \log k \Rightarrow \lim_{x \rightarrow 0}\frac{1}{x} \times 0 = \log_{e}k \Rightarrow k = 1.