Question
Question: If the function f(x) = \(\frac { a x + b } { ( x - 1 ) ( x - 4 ) }\)has a local maxima at (2, -1) t...
If the function f(x) = (x−1)(x−4)ax+bhas a local maxima at
(2, -1) then
A
b = 1, a = 0
B
a = 1, b = 0
C
b = -1, a = 0
D
a = −1, b = 0
Answer
a = 1, b = 0
Explanation
Solution
Clearly f(2) =-1
⇒ −1 = (2−1)(2−4)2a+b ⇒ 2a + b = 2
Now f '(x) = (2−1)(2−4)4a+5b−2bx−ax2, f '(2) = 0
⇒ a = 1 ⇒ b = 0
⇒ f'(x) = (x−1)(x−4)2−(x−2)(x+2)
Clearly for x > 2, f '(x) < 0 and for x < 2, f '(x) > 0.
Thus x = 2 is indeed the point of local maxima for y = f(x).