Question
Question: If the function f(x) = \(\frac{t + 3x - x^{2}}{x - 4}\), where t is a parameter that has a minimum a...
If the function f(x) = x−4t+3x−x2, where t is a parameter that has a minimum and maximum, then the range of value of t is
A
(0, 4)
B
(0, ¥)
C
(–¥, 4)
D
None
Answer
(–¥, 4)
Explanation
Solution
f(x) = x−4t+3x−x2;
f ¢(x) = (x−4)2(x−4)(3−2x)−(t+3x−x2)
for max. or min. f ¢(x) = 0
–2x2 + 11x –12 –t –3x + x2 = 0
–x2 + 8x – (12 + t) = 0
for one maxima & minima
D > 064 – 4 (12 + t) > 0
16 – 12 – t > 0 ̃ 4 > t or t < 4