Solveeit Logo

Question

Question: If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where $a > 0$, attains its local maximum and loc...

If the function f(x)=2x39ax2+12a2x+1f(x) = 2x^3 - 9ax^2 + 12a^2x + 1, where a>0a > 0, attains its local maximum and local minimum values at pp and qq, respectively, such that p2=qp^2 = q, then f(3)f(3) is equal to:

A

37

B

40

C

43

D

46

Answer

37

Explanation

Solution

The first derivative of f(x)f(x) is f(x)=6x218ax+12a2f'(x) = 6x^2 - 18ax + 12a^2. Setting f(x)=0f'(x) = 0 gives x23ax+2a2=0x^2 - 3ax + 2a^2 = 0, which factors as (xa)(x2a)=0(x-a)(x-2a)=0. The critical points are x=ax=a and x=2ax=2a. The second derivative is f(x)=12x18af''(x) = 12x - 18a. For x=ax=a, f(a)=12a18a=6af''(a) = 12a - 18a = -6a. Since a>0a>0, f(a)<0f''(a)<0, so x=ax=a is a local maximum. Thus, p=ap=a. For x=2ax=2a, f(2a)=12(2a)18a=24a18a=6af''(2a) = 12(2a) - 18a = 24a - 18a = 6a. Since a>0a>0, f(2a)>0f''(2a)>0, so x=2ax=2a is a local minimum. Thus, q=2aq=2a. Given p2=qp^2 = q, we have a2=2aa^2 = 2a. Since a>0a>0, we can divide by aa to get a=2a=2. Now, substitute a=2a=2 into f(x)f(x): f(x)=2x39(2)x2+12(22)x+1=2x318x2+48x+1f(x) = 2x^3 - 9(2)x^2 + 12(2^2)x + 1 = 2x^3 - 18x^2 + 48x + 1. Finally, evaluate f(3)f(3): f(3)=2(3)318(3)2+48(3)+1=2(27)18(9)+144+1=54162+144+1=37f(3) = 2(3)^3 - 18(3)^2 + 48(3) + 1 = 2(27) - 18(9) + 144 + 1 = 54 - 162 + 144 + 1 = 37.