Solveeit Logo

Question

Question: If the function \(f(x) = 2x^{3} - 9ax^{2} + 12a^{2}x + 1\), where \(a > 0\) attains its maximum and...

If the function f(x)=2x39ax2+12a2x+1f(x) = 2x^{3} - 9ax^{2} + 12a^{2}x + 1, where a>0a > 0

attains its maximum and minimum at p and q respectively

such that p2=qp^{2} = q, then a equals

A

3

B

1

C

2

D

12\frac{1}{2}

Answer

2

Explanation

Solution

f(x)=2x39ax2+12a2x+1f(x) = 2x^{3} - 9ax^{2} + 12a^{2}x + 1

f(x)=6x218ax+12a2f^{'}(x) = 6x^{2} - 18ax + 12a^{2}

f(x)=12x18af^{''}(x) = 12x - 18a

For maximum and minimum, 6x218ax+12a2=06x^{2} - 18ax + 12a^{2} = 0

x23ax+2a2=0x^{2} - 3ax + 2a^{2} = 0

x=ax = a or x=2ax = 2a at x=ax = a maximum and at x=2ax = 2a minimum

\because p2=qp^{2} = q

a2=2aa^{2} = 2aa=2a = 2 or a=0a = 0 but a>0,a > 0, therefore a=2a = 2.