Solveeit Logo

Question

Question: If the function \(\frac{2\pi}{3}\) is continuous in the interval \(\left( \frac{x - 2}{2} \right)\) ...

If the function 2π3\frac{2\pi}{3} is continuous in the interval (x22)\left( \frac{x - 2}{2} \right) then the values of a and b are respectively

A

0, 2

B

1, 1

C

2, 0

D

2, 1

Answer

2, 0

Explanation

Solution

\bullet \bullet The turning points for f(x)f ( x ) are

So, limx1f(x)=limh0f(1h)\lim _ { x \rightarrow 1 ^ { - } } f ( x ) = \lim _ { h \rightarrow 0 } f ( 1 - h ) = limh0[1+sinπ2(1h)]\lim _ { h \rightarrow 0 } \left[ 1 + \sin \frac { \pi } { 2 } ( 1 - h ) \right]

=[1+sin(π20)]\left[ 1 + \sin \left( \frac { \pi } { 2 } - 0 \right) \right] = 2

Similarly, limx1+f(x)=limh0f(1+h)\lim _ { x \rightarrow 1 ^ { + } } f ( x ) = \lim _ { h \rightarrow 0 } f ( 1 + h ) = limh0a(1+h)+b\lim _ { h \rightarrow 0 } a ( 1 + h ) + b = a + b

\bullet \bullet f(x)f ( x ) is continuous at so limx1f(x)=limx1+f(x)=f(1)\lim _ { x \rightarrow 1 ^ { - } } f ( x ) = \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = f ( 1 )

2=a+b2 = a + b ..…..(i)

Again, limx3f(x)=limh0f(3h)\lim _ { x \rightarrow 3 ^ { - } } f ( x ) = \lim _ { h \rightarrow 0 } f ( 3 - h ) = limh0a(3h)+b\lim _ { h \rightarrow 0 } a ( 3 - h ) + b = 3a+b3 a + b

and limx3+f(x)=limh0f(3+h)\lim _ { x \rightarrow 3 ^ { + } } f ( x ) = \lim _ { h \rightarrow 0 } f ( 3 + h ) = limh06tanπ12(3+h)\lim _ { h \rightarrow 0 } 6 \tan \frac { \pi } { 12 } ( 3 + h ) = 6

f(x)f ( x ) is continuous in (,6)( - \infty , 6 ), so it is continuous at x=3x = 3 also, so limx3f(x)=limx3+f(x)=f(3)\lim _ { x \rightarrow 3 ^ { - } } f ( x ) = \lim _ { x \rightarrow 3 ^ { + } } f ( x ) = f ( 3 )

3a+b=63 a + b = 6 .….(ii)

Solving (i) and (ii) a = 2, b = 0.

Trick : In above type of questions first find out the turning points. For example in above question they are x = 1,3. Now find out the values of the function at these points and if they are same then the function is continuous i.e., in above problem.

Which gives 2=a+b2 = a + b and 6=3a+b6 = 3 a + b after solving above linear equations we get a=2,b=0a = 2 , b = 0 .