Solveeit Logo

Question

Question: If the function \(f:R \rightarrow R\) be such that \(f(x) = x - \lbrack x\rbrack,\) where \(\lbrack ...

If the function f:RRf:R \rightarrow R be such that f(x)=x[x],f(x) = x - \lbrack x\rbrack, where [y]\lbrack y\rbrack denotes the greatest integer less than or equal to y, then f1(x)f^{- 1}(x) is

A

1x[x]\frac{1}{x - \lbrack x\rbrack}

B

[x]x\lbrack x\rbrack - x

C

Not defined

D

None

Answer

Not defined

Explanation

Solution

f(x)=x[x]f(x) = x - \lbrack x\rbrack Since, for x=0f(x)=0x = 0 \Rightarrow f(x) = 0

For x=1f(x)=0x = 1 \Rightarrow f(x) = 0.

For every integer value of x,f(x)=0x,f(x) = 0

\Rightarrow f(x)f(x) is not one-one \Rightarrow So f1(x)f^{- 1}(x) is not defined.