Solveeit Logo

Question

Question: If the function \[f(x)={{x}^{2}}\] , \[g(x)=\tan x\] and \[h(x)=\log x\] then \[\left\\{ ho\left( go...

If the function f(x)=x2f(x)={{x}^{2}} , g(x)=tanxg(x)=\tan x and h(x)=logxh(x)=\log x then \left\\{ ho\left( gof \right) \right\\}\left( \sqrt{\dfrac{\pi }{4}} \right) .
a.0
b.1
c.1x\dfrac{1}{x}
d.12logπ4\dfrac{1}{2}\log \dfrac{\pi }{4}

Explanation

Solution

Hint: First of all, we need to find gofgof . For that we have to replace x by f(x)f(x)in the function g(x)=tanxg(x)=\tan x . After replacing we get, g\left\\{ f\left( x \right) \right\\}=\tan f\left( x \right) , where f(x)=x2f(x)={{x}^{2}} . Then, replace x by
g\left\\{ f\left( x \right) \right\\} in the function h(x)=logxh(x)=\log x . After replacing we get, h[g\left\\{ f\left( x \right) \right\\}]=\log g\left\\{ f\left( x \right) \right\\} , where g\left\\{ f\left( x \right) \right\\}=\tan f\left( x \right) . Now solve it further after putting the value of function f(x)=x2f(x)={{x}^{2}} where x=π4x=\sqrt{\dfrac{\pi }{4}} .

Complete step-by-step answer:
According to the question, we have the value of the function
f(x)=x2f(x)={{x}^{2}} ……………….(1)
g(x)=tanxg(x)=\tan x ………………..(2)
h(x)=logxh(x)=\log x …………………………(3)
We have to find the value of \left\\{ ho\left( gof \right) \right\\}\left( \sqrt{\dfrac{\pi }{4}} \right) . For that, we need to find gofgof first.
For that we need to find gofgof that is gof=g\left\\{ f\left( x \right) \right\\} .
Replacing x f(x)f(x)in the function g(x)=tanxg(x)=\tan x , we get
gof=g\left\\{ f\left( x \right) \right\\}=\tan f(x) ………………(4)
From equation (1), we have f(x)=x2f(x)={{x}^{2}} .
From equation (1) and equation (4), we get
gof=g\left\\{ f\left( x \right) \right\\}=\tan f(x)=\tan {{x}^{2}} …………………….(5)
Now, we are going to find \left\\{ ho\left( gof \right) \right\\} .
Replacing x by gofgof in the function h(x)=logxh(x)=\log x , we get
\left\\{ ho\left( gof \right) \right\\}=h[g\left\\{ f\left( x \right) \right\\}]=\log g\left\\{ f\left( x \right) \right\\} ………………….(6)
From equation (5) we have g\left\\{ f\left( x \right) \right\\}=\tan {{x}^{2}} . Now, putting the value of g\left\\{ f\left( x \right) \right\\} in equation (6), we get
\left\\{ ho\left( gof \right) \right\\}=h[g\left\\{ f\left( x \right) \right\\}]=\log g\left\\{ f\left( x \right) \right\\}=\log \tan {{x}^{2}} ……………………..(7)
It is asked to find the value of \left\\{ ho\left( gof \right) \right\\}\left( \sqrt{\dfrac{\pi }{4}} \right) . So, put the value of x as π4\dfrac{\pi }{4} .
Now, putting x=π4x=\dfrac{\pi }{4} in equation (7), we get
\left\\{ ho\left( gof \right) \right\\}\left( \sqrt{\dfrac{\pi }{4}} \right)=\log \tan {{\left( \dfrac{\pi }{4} \right)}^{2}} ……………………………(8)
We know that, tanπ4=1\tan \dfrac{\pi }{4}=1 . Putting tanπ4=1\tan \dfrac{\pi }{4}=1 in equation (8), we get
\left\\{ ho\left( gof \right) \right\\}\left( \sqrt{\dfrac{\pi }{4}} \right)=\log \tan {{\left( \dfrac{\pi }{4} \right)}^{2}}=\log {{1}^{2}}=\log 1=0
So, \left\\{ ho\left( gof \right) \right\\}\left( \sqrt{\dfrac{\pi }{4}} \right)=0 .
Hence, the correct option is (A).

Note: In question one might make a mistake in finding gofgof . One might replace x by g(x)g(x) in the function f(x)f(x) which is wrong. Here order matters, if it is gofgof then we have to replace x by f(x)f(x) in the function g(x)g(x) and if it is fogfog then we have to replace x by g(x)g(x) in the function f(x)f(x) .