Question
Mathematics Question on Limits
If the function f(x) satisfies limx→1 x2−1f(x)−2 =π, evaluate limx→1 f(x).
Answer
limx→1 x2−1f(x)−2 =π
\Rightarrow$$\frac{\lim_{x\rightarrow 1} (f(x)-2)}{\lim_{x\rightarrow 1}(x^2-1)} =π
\Rightarrow$$\lim_{x\rightarrow 1} (f(x)-2)=π limx→1 (x2-1)
\Rightarrow$$\lim_{x\rightarrow 1} (f(x)-2)=π(12-1)
\Rightarrow$$\lim_{x\rightarrow 1} (f(x)-2)=0
\Rightarrow$$\lim_{x\rightarrow 1} f(x)-limx→12=0
\Rightarrow$$\lim_{x\rightarrow 1} f(x)- 2=0
∴limx→1 f(x) = 2