Solveeit Logo

Question

Mathematics Question on Relations and functions

If the function f(x)=(1x)2x;x>0f(x) = \left(\frac{1}{x}\right)^{2x}; \, x>0 attains the maximum value at x=1cx = \frac{1}{c}, then:

A

eπ<πce^\pi<\pi^c

B

e2π<(2π)ce^{2\pi}<(2\pi)^c

C

eπ>πce^\pi>\pi^c

D

(2e)π>π(2e)(2e)^\pi>\pi^{(2e)}

Answer

eπ>πce^\pi>\pi^c

Explanation

Solution

Step 1 : Let
y=(1x)2xy = \left( \frac{1}{x} \right)^{2x}
Taking the natural logarithm on both sides:
lny=2xln(1x)\ln y = 2x \ln \left( \frac{1}{x} \right)
Simplify:
lny=2xlnx\ln y = -2x \ln x
Step 2 : Differentiating with respect to xx
Differentiating both sides with respect to xx:
1ydydx=2(1+lnx)\frac{1}{y} \frac{dy}{dx} = -2(1 + \ln x)
Multiply through by yy:
dydx=y(2)(1+lnx)\frac{dy}{dx} = y \cdot (-2)(1 + \ln x)
Step 3 : Behavior of the function
For x>1ex > \frac{1}{e}, the function fnf^n is decreasing.
Thus, we can establish the following inequalities:
e<πe < \pi
(1e)2e>(1π)2π\left( \frac{1}{e} \right)^{2e} > \left( \frac{1}{\pi} \right)^{2\pi}
eπ>πee^\pi > \pi^e