Question
Question: If the function \[f(x)=\dfrac{K\sin x+2\cos x}{\sin x+\cos x}\] is strictly increasing for all value...
If the function f(x)=sinx+cosxKsinx+2cosx is strictly increasing for all values of x, then
(A). K<1
(B). K>1
(C). K<2
(D). K>2
Solution
HINT: - For finding whether a function is increasing or decreasing at a particular value of x, we follow the following steps and get to the answer
1. First of all, we take the derivative of the function that is given to us.
2. Then we put the value of x at which we have to find whether the function is increasing or decreasing.
3. If the value of the derivative of the function at the entered value of x comes out to be positive, then we can say that the function is increasing and if the value of the derivative of the function at the entered value of x comes out to be negative, then we can say that the function is decreasing.
Complete step-by-step solution -
The most important formulae that would be used in solving this question are as follows
1. Quotient rule of differentiation:-
dxd(vu)=v2v⋅dxdu−u⋅dxdv
2. sin2x+cos2x=1 .
As mentioned in the question, we have to find the value of K for which the function that is given in the question is increasing for all values of x.
Now, as mentioned in the question, we have to first take the derivative of the function as follows