Solveeit Logo

Question

Question: If the function \(f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2},\left( a>2 \right),\) then \[f\left( x+y \rig...

If the function f(x)=ax+ax2,(a>2),f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2},\left( a>2 \right), then f(x+y)+f(xy)f\left( x+y \right)+f\left( x-y \right) is equal to
A.2f(x)f(y)2f\left( x \right)f\left( y \right)
B. f(x)f(y)f\left( x \right)f\left( y \right)
C. f(x)f(y)\dfrac{f\left( x \right)}{f\left( y \right)}
D. None of these

Explanation

Solution

Hint: Find f(x + y) and f(x – y) individually by the given function i.e. f(x)=ax+ax2,f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2},
Try to simplify the relation f(x + y) + f(x – y) and then compare the simplified equation with f(x) and f(y) to get the correct answer.

Here, function f(x) is provided as
f(x)=ax+ax2,(a>2).............(1)f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2},\left( a>2 \right).............\left( 1 \right)
We need to determine the value of function f(x + y) + f(x – y)=?.
As, equation (1) is defined with respect to ‘x’, we can get f(x + y) and f(x – y) by replacing ‘x’ by (x + y) and (x – y) respectively to the given function or equation (1).
Hence, f(x + y) is given as
f(x+y)=a(x+y)+a(x+y)2...........(2)f\left( x+y \right)=\dfrac{{{a}^{\left( x+y \right)}}+{{a}^{-(x+y)}}}{2}...........\left( 2 \right)
And similarly f(x –y) can be written as
f(xy)=a(xy)+a(xy)2................(3)f\left( x-y \right)=\dfrac{{{a}^{\left( x-y \right)}}+{{a}^{-\left( x-y \right)}}}{2}................\left( 3 \right)
So, f(x + y) + f(x – Y) from equation (2) and (3), we get;
f(x+y)+(xy)=a(x+y)+a(x+y)2+a(xy)+a(xy)2..............(4)f\left( x+y \right)+\left( x-y \right)=\dfrac{{{a}^{\left( x+y \right)}}+{{a}^{-\left( x+y \right)}}}{2}+\dfrac{{{a}^{\left( x-y \right)}}+{{a}^{-\left( x-y \right)}}}{2}..............\left( 4 \right)
Now, we can use following property of surds to simplify equation (4);
ma=1ma ma.mb=ma+b mamb=mab \begin{aligned} & {{m}^{-a}}=\dfrac{1}{{{m}^{a}}} \\\ & {{m}^{a}}.{{m}^{b}}={{m}^{a+b}} \\\ & \dfrac{{{m}^{a}}}{{{m}^{b}}}={{m}^{a-b}} \\\ \end{aligned}
Hence, we can write equation (4) as
f(x+y)+f(xy)=ax+y+1ax+y2+axy+1axy2f\left( x+y \right)+f\left( x-y \right)=\dfrac{{{a}^{x+y}}+\dfrac{1}{{{a}^{x+y}}}}{2}+\dfrac{{{a}^{x-y}}+\dfrac{1}{{{a}^{x-y}}}}{2}
Now, using the relations ma+b=mamb&mab=mamb{{m}^{a+b}}={{m}^{a}}{{m}^{b}}\And {{m}^{a-b}}=\dfrac{{{m}^{a}}}{{{m}^{b}}}, we get the above equation as;
f(x+y)+f(xy)=12(ax.ay+1ax.ay+axay+ayax) Or f(x+y)+f(xy)=12(axay+axay+ayax+1axay) \begin{aligned} & f\left( x+y \right)+f\left( x-y \right)=\dfrac{1}{2}\left( {{a}^{x}}.{{a}^{y}}+\dfrac{1}{{{a}^{x}}.{{a}^{y}}}+\dfrac{{{a}^{x}}}{{{a}^{y}}}+\dfrac{{{a}^{y}}}{{{a}^{x}}} \right) \\\ & Or \\\ & f\left( x+y \right)+f\left( x-y \right)=\dfrac{1}{2}\left( {{a}^{x}}{{a}^{y}}+\dfrac{{{a}^{x}}}{{{a}^{y}}}+\dfrac{{{a}^{y}}}{{{a}^{x}}}+\dfrac{1}{{{a}^{x}}{{a}^{y}}} \right) \\\ \end{aligned}
Now, taking a(x){{a}^{\left( x \right)}} common from first two brackets and 1ax\dfrac{1}{{{a}^{x}}} from last two brackets, we get;
12(ax(ay+1ay)+1ax(ay+1ay))\dfrac{1}{2}\left( {{a}^{x}}\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right)+\dfrac{1}{{{a}^{x}}}\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right) \right)
Hence, f(x+y)+f(xy)f\left( x+y \right)+f\left( x-y \right) can be written as
f(x+y)+f(xy)=(ax+1ax)(ay+1ay)f\left( x+y \right)+f\left( x-y \right)=\left( {{a}^{x}}+\dfrac{1}{{{a}^{x}}} \right)\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right)
Now, using property 1mn=mn\dfrac{1}{{{m}^{n}}}={{m}^{-n}} ,
We can simplify above equation as;
f(x+y)+f(xy)=(ax+ax)(ay+ay)2f\left( x+y \right)+f\left( x-y \right)=\dfrac{\left( {{a}^{x}}+{{a}^{-x}} \right)\left( {{a}^{y}}+{{a}^{-y}} \right)}{2}
Now, let us multiply by ‘2’ in numerator and denominator both ;
f(x+y)+f(xy)=2(ax+ax2)(ay+ay2)........(5)f\left( x+y \right)+f\left( x-y \right)=2\left( \dfrac{{{a}^{x}}+{{a}^{-x}}}{2} \right)\left( \dfrac{{{a}^{y}}+{{a}^{-y}}}{2} \right)........\left( 5 \right)
Now, we have f(x)=ax+ax2f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2}from equation (1), hence we can replace ax+ax2\dfrac{{{a}^{x}}+{{a}^{-x}}}{2}by f(x)f(x)and ay+ay2\dfrac{{{a}^{y}}+{{a}^{-y}}}{2}by f(y)f(y)in equation (5), hence we can write equation (5) as
f(x+y)+f(xy)=2f(x)f(y)f\left( x+y \right)+f\left( x-y \right)=2f\left( x \right)f\left( y \right)
Therefore option (A) is the correct answer.

Note: Another approach for above question would be that one can simplify
(ax+y+a(x+y)2)&(axy+a(xy)2)\left( \dfrac{{{a}^{x+y}}+{{a}^{-\left( x+y \right)}}}{2} \right)\And \left( \dfrac{{{a}^{x-y}}+{{a}^{-\left( x-y \right)}}}{2} \right) individually first before putting in equation f(x+y)+f(xy)f\left( x+y \right)+f\left( x-y \right).
One can waste his/her time if he/she goes to solve the problem by solving the given options and then compare it with f(x+y)+f(xy)f\left( x+y \right)+f\left( x-y \right). Hence, this procedure will take more time than provided in the solution.
One can apply property of surds as an=1a1n or a1n{{a}^{-n}}=\dfrac{1}{{{a}^{\dfrac{1}{n}}}}\text{ or }{{a}^{\dfrac{1}{n}}} which are wrong. Correct property is given as an=1an{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}. Hence be careful while applying the property of surds in the kinds of problems.