Solveeit Logo

Question

Mathematics Question on limits and derivatives

If the function f(x)f(x) defined by x100100+x99100+x2100+x+1\frac {x^{100}}{100}+\frac {x^{99}}{100}+\dots \frac {x^2}{100}+x+1 then f(0)f'(0) is equal to

A

100100

B

1-1

C

100f(0)100 f'(0)

D

11

Answer

11

Explanation

Solution

Given, f(x)=x100100+x9999+...+x22+x1+1f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+...+\frac{x^{2}}{2}+\frac{x}{1}+1
On differentiating both sides w.r.t. xx, we get
f(x)=100x99100+99x9899+...+2x2+1+0f'(x) =\frac{100 x^{99}}{100}+ \frac{99 x^{98}}{99}+...+\frac{2 x}{2}+1+0
f(x)=x99+x98++x+1\Rightarrow f'(x) =x^{99}+ x^{98}+\ldots+x+1
Put x=0x=0, we get
f(0)=0+0++0+1f'(0) =0+0+\ldots+0+1
f(0)=1\Rightarrow f'(0) =1