Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If the function f(x)={72x9x8x+121+cosx,x0 aloge2loge3,x=0f(x) = \begin{cases} \frac{72^x - 9^x - 8^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\\ a \log_e 2 \log_e 3, & x = 0 \end{cases} is continuous at x=0x = 0, then the value of a2a^2 is equal to

A

968

B

1152

C

746

D

1250

Answer

1152

Explanation

Solution

Solution: For the function f(x)f(x) to be continuous at x=0x = 0, we must have:

limx0f(x)=f(0).\lim_{x \to 0} f(x) = f(0).

Calculating the limit on the left-hand side for x0x \to 0, we get:

limx072x29x8x2+121+cosx.\lim_{x \to 0} \frac{72x^2 - 9x - 8x^2 + 1}{\sqrt{2} - \sqrt{1 + \cos x}}.

Using L’Hôpital’s Rule, we evaluate this limit step-by-step, and find that:

f(0)=alne2lne3.f(0) = a \ln e \, 2 \ln e \, 3.

Setting the limit equal to f(0)f(0), we solve for a2a^2 and find a2=1152a^2 = 1152.