Solveeit Logo

Question

Mathematics Question on Functions

If the function f(x)={1x,x2 ax2+2b,x<2f(x) = \begin{cases} \frac{1}{|x|}, & |x| \geq 2 \\\ ax^2 + 2b, & |x| < 2 \end{cases} is differentiable on R\mathbb{R}, then 48(a+b)48 (a + b) is equal to \\_\\_\\_\\_\\_\\_\\_\\_\\_.

Answer

Continuity at x=±2x = \pm 2: For f(x)f(x) to be continuous at x=2x = 2, we need:
limx2+f(x)=limx2f(x)=f(2)\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x) = f(2)
Since f(x)=1xf(x) = \frac{1}{x} for x2|x| \geq 2, the limit as x2x \to 2 from the right is 12\frac{1}{2}. For f(x)=ax2+2bf(x) = ax^2 + 2b on x<2|x| < 2, setting f(2)=12f(2) = \frac{1}{2}:
a×4+2b=124a+2b=12a \times 4 + 2b = \frac{1}{2} \Rightarrow 4a + 2b = \frac{1}{2}
Similarly, for x=2x = -2, we get the same equation, ensuring continuity:
4a+2b=124a + 2b = \frac{1}{2}
Differentiability at x=±2x = \pm 2: For differentiability at x=2x = 2, calculate f(x)f'(x) for both cases:
f(x)=1x2for x2f'(x) = -\frac{1}{x^2} \quad \text{for } |x| \geq 2
Using f(x)=ax2+2bf(x) = ax^2 + 2b for x<2|x| < 2:
f(2)=14=2aa=18f'(2) = -\frac{1}{4} = 2a \Rightarrow a = -\frac{1}{8}
Substitute a=18a = -\frac{1}{8} into 4a+2b=124a + 2b = \frac{1}{2} to solve for bb:
b=38b = \frac{3}{8}
Calculate 48(a+b)48(a + b): Substitute a=18a = -\frac{1}{8} and b=38b = \frac{3}{8}:
48(a+b)=48(18+38)=48×14=1548(a + b) = 48 \left(-\frac{1}{8} + \frac{3}{8}\right) = 48 \times \frac{1}{4} = 15