Question
Mathematics Question on Continuity
If the function
f(x)={sec x−cos xloge(1−x+x2)+loge(1+x+x2), k,x∈(−2π,2π)−0x=0
is continuous at x=0, then k is equal to
A
1
B
-1
C
e
D
0
Answer
1
Explanation
Solution
f(x)={sec x−cos xloge(1−x+x2)+loge(1+x+x2), k,x∈(−2π,2π)−0x=0
for continuity at x=0
x→0limf(x)=k
∴ k=x→0lim sec x−cos xloge(1−x+x2)+loge(1+x+x2) (00 form)
=x→0lim sin2xcos xloge(x4+x2+1)
=x→0lim logex2(x4+x2+1)
=x→0lim x2+x4ln(1+x2+x4)⋅x2x2+x4
=1
So, the correct option is (A): 1