Solveeit Logo

Question

Mathematics Question on Continuity

If the function
f(x)={loge(1x+x2)+loge(1+x+x2)sec⁡ xcos⁡ x,x(π2,π2)0 k,x=0f(x) = \begin{cases} \frac {log_e(1−x+x^2)+log_e(1+x+x_2)}{sec⁡\ x−cos⁡\ x}, & \quad x∈(−\frac \pi2,\frac \pi2)−{0}\\\ k, & \quad x=0 \end{cases}
is continuous at x=0x = 0, then k is equal to

A

1

B

-1

C

e

D

0

Answer

1

Explanation

Solution

f(x)={loge(1x+x2)+loge(1+x+x2)sec⁡ xcos⁡ x,x(π2,π2)0 k,x=0f(x) = \begin{cases} \frac {log_e(1−x+x^2)+log_e(1+x+x_2)}{sec⁡\ x−cos⁡\ x}, & \quad x∈(−\frac \pi2,\frac \pi2)−{0}\\\ k, & \quad x=0 \end{cases}
for continuity at x=0x = 0
limx0f(x)=k\lim\limits_{x→0}f(x)=k

k=limx0k=\lim\limits_{x→0} loge(1x+x2)+loge(1+x+x2)sec⁡ xcos⁡ x\frac {log_e(1−x+x^2)+log_e(1+x+x_2)}{sec⁡\ x−cos⁡\ x} (00\frac 00 form)

=limx0\lim\limits_{x→0} cos ⁡xloge(x4+x2+1)sin2x\frac {cos\ ⁡x log_e(x^4+x^2+1)}{sin^2⁡x}

=limx0\lim\limits_{x→0} loge(x4+x2+1)x2log_e \frac {(x_4+x_2+1)}{x_2}

=limx0\lim\limits_{x→0} ln(1+x2+x4)x2+x4x2+x4x2\frac {ln(1+x^2+x^4)}{x^2+x4} ⋅ \frac {x^2+x^4}{x^2}
=11

So, the correct option is (A): 11