Question
Question: If the function \(f(x) = a + bx\) and \({f^r} = fff...\)(repeated \(r\) times), then \(\frac{d}{{dx}...
If the function f(x)=a+bx and fr=fff...(repeated r times), then \frac{d}{{dx}}\left\\{ {{f^r}(x)} \right\\} is equal to
E.a+brx
F.ar+brx
G.ar
H.br
Solution
Hint: Here we proceed by observing the logic given in the question.
Given, f(x)=a+bx
f\left\\{ {f(x)} \right\\} = a + b(a + bx)
=ab+a+b2x
=a(1+b)+b2x
f\left[ {f\left\\{ {f(x)} \right\\}} \right] = f\left\\{ {a(1 + b) + {b^2}x} \right\\}
= a + b\left\\{ {a(1 + b) + {b^2}x} \right\\}
=a(1+b+b2)+b3x
Therefore, fr(x)=a(1+b+b2+....+br−1)+brx
frx=a(b−1br−1]+brx
\Rightarrow \frac{d}{{dx}}\left\\{ {{f^r}x} \right\\} = {b^r}
Note: The given function isf(x)=a+bx, where x is variable. We are finding a general form of fr(x)fromf(x). Then differentiating the obtained fr(x) with respect to x to get the required answer.