Solveeit Logo

Question

Question: If the function \(f(x) = a + bx\) and \({f^r} = fff...\)(repeated \(r\) times), then \(\frac{d}{{dx}...

If the function f(x)=a+bxf(x) = a + bx and fr=fff...{f^r} = fff...(repeated rr times), then \frac{d}{{dx}}\left\\{ {{f^r}(x)} \right\\} is equal to
E.a+brxa + {b^r}x
F.ar+brxar + {b^r}x
G.arar
H.br{b^r}

Explanation

Solution

Hint: Here we proceed by observing the logic given in the question.
Given, f(x)=a+bxf(x) = a + bx
f\left\\{ {f(x)} \right\\} = a + b(a + bx)
=ab+a+b2x= ab + a + {b^2}x
=a(1+b)+b2x= a(1 + b) + {b^2}x
f\left[ {f\left\\{ {f(x)} \right\\}} \right] = f\left\\{ {a(1 + b) + {b^2}x} \right\\}
= a + b\left\\{ {a(1 + b) + {b^2}x} \right\\}
=a(1+b+b2)+b3x= a(1 + b + {b^2}) + {b^3}x
Therefore, fr(x)=a(1+b+b2+....+br1)+brx{f^r}(x) = a(1 + b + {b^2} + .... + {b^{r - 1}}) + {b^r}x
frx=a(br1b1]+brx{f^r}x = a\left( {\frac{{{b^r} - 1}}{{b - 1}}} \right] + {b^r}x
\Rightarrow \frac{d}{{dx}}\left\\{ {{f^r}x} \right\\} = {b^r}

Note: The given function isf(x)=a+bxf(x) = a + bx, where x is variable. We are finding a general form of fr(x){f^r}(x)fromf(x)f(x). Then differentiating the obtained fr(x){f^r}(x) with respect to x to get the required answer.