Solveeit Logo

Question

Question: If the function f(\(\theta\)) is given as \(f\left( \theta \right)=\left[ \begin{matrix} \cos \...

If the function f(θ\theta) is given as f(θ)=[cosθsinθ sinθcosθ ],f(θ).f(ϕ)=f\left( \theta \right)=\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right],f\left( \theta \right).f\left( \phi \right)=
A. f(θ+ϕ)f\left( \theta +\phi \right)
B. f(θ.ϕ)f\left( \theta .\phi \right)
C. f(θ)+f(ϕ)f\left( \theta \right)+f\left( \phi \right)
D. f(θϕ)f\left( \theta -\phi \right)

Explanation

Solution

First of all find f(ϕ)f\left( \phi \right) by replacing θ\theta with ϕ\phi in the given matrix. Multiply the matrices f(θ)f\left( \theta \right) and f(ϕ)f\left( \phi \right) by using the general rule of multiplication of matrix given as : [ab cd ]×[ef gh ]=[ae+bgaf+bh ce+dgcf+dh ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right]\times \left[ \begin{matrix} e & f \\\ g & h \\\ \end{matrix} \right]=\left[ \begin{matrix} ae+bg & af+bh \\\ ce+dg & cf+dh \\\ \end{matrix} \right]. Now, use these four trigonometric identities to simplify the expression.
(i)cosAcosBsinAsinB=cos(A+B) (ii)cosAcosB+sinAsinB=cos(AB) (iii)sinAcosB+cosAsinB=sin(A+B) (iv)sinAcosBcosAsinB=sin(AB) \begin{aligned} & \left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) \\\ & \left( ii \right)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right) \\\ & \left( iii \right)\sin A\cos B+\cos A\sin B=\sin \left( A+B \right) \\\ & \left( iv \right)\sin A\cos B-\cos A\sin B=\sin \left( A-B \right) \\\ \end{aligned}

Complete step by step answer:
Here, we have been provided with a matrix :
f(θ)=[cosθsinθ sinθcosθ ]f\left( \theta \right)=\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right]
We have to find the value of f(θ).f(ϕ)f\left( \theta \right).f\left( \phi \right). To do this first we have to find the matrix f(ϕ)f\left( \phi \right).
Now, by replacing θ\theta with ϕ\phi in the matrix f(θ)f\left( \theta \right), we get,
f(ϕ)=[cosϕsinϕ sinϕcosϕ ]f\left( \phi \right)=\left[ \begin{matrix} \cos \phi & \sin \phi \\\ -\sin \phi & \cos \phi \\\ \end{matrix} \right]
Now, when we have two matrices, [ab cd ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right] and [ef gh ]\left[ \begin{matrix} e & f \\\ g & h \\\ \end{matrix} \right], their multiplication is given as :
[ab cd ]×[ef gh ]=[ae+bgaf+bh ce+dgcf+dh ]\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right]\times \left[ \begin{matrix} e & f \\\ g & h \\\ \end{matrix} \right]=\left[ \begin{matrix} ae+bg & af+bh \\\ ce+dg & cf+dh \\\ \end{matrix} \right]
Therefore, by applying the above procedure, we get,
f(θ).f(ϕ)=[cosθsinθ sinθcosθ ].[cosϕsinϕ sinϕcosϕ ] f(θ).f(ϕ)=[cosθcosϕ+sinθ(sinϕ)cosθsinϕ+sinθcosϕ sinθcosϕ+cosθ(sinϕ)sinθsinϕ+cosθcosϕ ] f(θ).f(ϕ)=[cosθcosϕsinθsinϕcosθsinϕ+sinθcosϕ (sinθcosϕ+cosθsinϕ)cosθcosϕsinθsinϕ ] \begin{aligned} & f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix} \cos \theta & \sin \theta \\\ -\sin \theta & \cos \theta \\\ \end{matrix} \right].\left[ \begin{matrix} \cos \phi & \sin \phi \\\ -\sin \phi & \cos \phi \\\ \end{matrix} \right] \\\ & \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix} \cos \theta \cos \phi +\sin \theta \left( -\sin \phi \right) & \cos \theta \sin \phi +\sin \theta \cos \phi \\\ -\sin \theta \cos \phi +\cos \theta \left( -\sin \phi \right) & -\sin \theta \sin \phi +\cos \theta \cos \phi \\\ \end{matrix} \right] \\\ & \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix} \cos \theta \cos \phi -\sin \theta \sin \phi & \cos \theta \sin \phi +\sin \theta \cos \phi \\\ -\left( \sin \theta \cos \phi +\cos \theta \sin \phi \right) & \cos \theta \cos \phi -\sin \theta \sin \phi \\\ \end{matrix} \right] \\\ \end{aligned}
Now applying the following trigonometric identities in corresponding elements of matrix, we get,
(i)cosAcosBsinAsinB=cos(A+B)\left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right), in element a11{{a}_{11}} and a22{{a}_{22}}
(ii)cosAsinB+sinAcosB=sin(A+B)\left( ii \right)\cos A\sin B+\sin A\cos B=\sin \left( A+B \right), in element a12{{a}_{12}} and a21{{a}_{21}}
f(θ).f(ϕ)=[cos(θ+ϕ)sin(θ+ϕ) sin(θ+ϕ)cos(θ+ϕ) ]\Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix} \cos \left( \theta +\phi \right) & \sin \left( \theta +\phi \right) \\\ -\sin \left( \theta +\phi \right) & \cos \left( \theta +\phi \right) \\\ \end{matrix} \right]
Clearly, we can see that the matrix obtained in R.H.S can be written as f(θ+ϕ)f\left( \theta +\phi \right).
Therefore, f(θ).f(ϕ)=f(θ+ϕ)f\left( \theta \right).f\left( \phi \right)=f\left( \theta +\phi \right).

So, the correct answer is “Option A”.

Note: One may note that there is an easy method to find the correct option. We can assign some particular values to θ\theta and ϕ\phi like 0,30,60,90{{0}^{\circ }},{{30}^{\circ }},{{60}^{\circ }},{{90}^{\circ }} etc and find the value of f(θ).f(ϕ)f\left( \theta \right).f\left( \phi \right). Now, we will check the options one by one by substituting the same particular value of θ\theta and ϕ\phi in them. But remember that this method can only be applied if the options are provided, otherwise you have to use the general method of multiplication of two matrices as used in the above solution.