Solveeit Logo

Question

Question: If the function \(f\left( x \right)={{x}^{3}}+{{e}^{\dfrac{x}{2}}}\) and \(g\left( x \right)={{f}^{-...

If the function f(x)=x3+ex2f\left( x \right)={{x}^{3}}+{{e}^{\dfrac{x}{2}}} and g(x)=f1(x)g\left( x \right)={{f}^{-1}}\left( x \right), then the value of g(1){{g}^{'}}\left( 1 \right) is

Explanation

Solution

For this problem we need to calculate the value of g(1){{g}^{'}}\left( 1 \right) where the given data is f(x)=x3+ex2f\left( x \right)={{x}^{3}}+{{e}^{\dfrac{x}{2}}} and g(x)=f1(x)g\left( x \right)={{f}^{-1}}\left( x \right). We will first calculate the value of f(x){{f}^{'}}\left( x \right) by differentiating the given function f(x)=x3+ex2f\left( x \right)={{x}^{3}}+{{e}^{\dfrac{x}{2}}} with respect to xx. Now from the second relation which is g(x)=f1(x)g\left( x \right)={{f}^{-1}}\left( x \right), we will calculate the value of g(f(x))g\left( f\left( x \right) \right) and differentiate it with respect to xx. Now we can calculate the value of g(1){{g}^{'}}\left( 1 \right) by using the value f(0)=1f\left( 0 \right)=1.

Complete step by step solution:
Given that, f(x)=x3+ex2f\left( x \right)={{x}^{3}}+{{e}^{\dfrac{x}{2}}} and g(x)=f1(x)g\left( x \right)={{f}^{-1}}\left( x \right).
Differentiating the given function f(x)f\left( x \right) with respect to xx, then we will get
f(x)=ddx[x3+ex2]{{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ {{x}^{3}}+{{e}^{\dfrac{x}{2}}} \right]
Applying differentiation for each term individually, then we will have
f(x)=ddx(x3)+ddx(ex2){{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( {{x}^{3}} \right)+\dfrac{d}{dx}\left( {{e}^{\dfrac{x}{2}}} \right)
Using the differentiation formulas ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}, ddx(eax)=aeax\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}} in the above equation, then the above equation is modified as
f(x)=3x2+12ex2{{f}^{'}}\left( x \right)=3{{x}^{2}}+\dfrac{1}{2}{{e}^{\dfrac{x}{2}}}
Now consider the given equation g(x)=f1(x)g\left( x \right)={{f}^{-1}}\left( x \right). From this equation we can write that
g(f(x))=xg\left( f\left( x \right) \right)=x
Differentiating the above equation with respect to xx, then we will get
ddx[g(f(x))]=dxdx\dfrac{d}{dx}\left[ g\left( f\left( x \right) \right) \right]=\dfrac{dx}{dx}
Using the differentiation formula ddx[p(q(x))]=p(q(x)).q(x)\dfrac{d}{dx}\left[ p\left( q\left( x \right) \right) \right]={{p}^{'}}\left( q\left( x \right) \right).{{q}^{'}}\left( x \right) in the above equation, then the above equation is modified as
g(f(x))×f(x)=1 g(f(x))=1f(x) \begin{aligned} & {{g}^{'}}\left( f\left( x \right) \right)\times {{f}^{'}}\left( x \right)=1 \\\ & \Rightarrow {{g}^{'}}\left( f\left( x \right) \right)=\dfrac{1}{{{f}^{'}}\left( x \right)} \\\ \end{aligned}
To find the value of g(1){{g}^{'}}\left( 1 \right), the value of f(x)f\left( x \right) should be equal to 11 in the above equation. By observing the given function f(x)=x3+ex2f\left( x \right)={{x}^{3}}+{{e}^{\dfrac{x}{2}}}, we can write that f(0)=1f\left( 0 \right)=1. So, to find the value of g(1){{g}^{'}}\left( 1 \right) substituting x=0x=0 in the above equation, then we will get
g(f(0))=1f(0){{g}^{'}}\left( f\left( 0 \right) \right)=\dfrac{1}{{{f}^{'}}\left( 0 \right)}
From the values f(0)=1f\left( 0 \right)=1, f(x)=3x2+12ex2{{f}^{'}}\left( x \right)=3{{x}^{2}}+\dfrac{1}{2}{{e}^{\dfrac{x}{2}}} the above equation is modified as
g(1)=13(0)2+12e02{{g}^{'}}\left( 1 \right)=\dfrac{1}{3{{\left( 0 \right)}^{2}}+\dfrac{1}{2}{{e}^{\dfrac{0}{2}}}}
We know that the value of e02=e0=1{{e}^{\dfrac{0}{2}}}={{e}^{0}}=1. Substituting this value in the above equation then we will get
g(1)=112 g(1)=2 \begin{aligned} & {{g}^{'}}\left( 1 \right)=\dfrac{1}{\dfrac{1}{2}} \\\ & \therefore {{g}^{'}}\left( 1 \right)=2 \\\ \end{aligned}
Hence the value of the g(1){{g}^{'}}\left( 1 \right) is 22.

Note: We can also solve this problem in another method which is the traditional method in which we will calculate the inverse of f(x)f\left( x \right) and equate to the g(x)g\left( x \right) and calculate the required value by differentiating the function g(x)g\left( x \right) and substituting x=1x=1 in g(x){{g}^{'}}\left( x \right). We can calculate the inverse of the function f(x)f\left( x \right) by equating the given function to yy and calculating the value of xx in terms of yy.