Solveeit Logo

Question

Question: If the function \(f\left( x \right)=\left\\{ \begin{matrix} a\left| \pi -x \right|+1,x\le 5 \\\...

If the function f\left( x \right)=\left\\{ \begin{matrix} a\left| \pi -x \right|+1,x\le 5 \\\ b\left| \pi -x \right|+3,x>5 \\\ \end{matrix} \right. is continuous at x=5x=5, then find the value of aba-b?
(a) 25π\dfrac{2}{5-\pi },
(b) 2π5\dfrac{2}{\pi -5},
(c) 2π+5\dfrac{2}{\pi +5},
(d) 2π+5\dfrac{-2}{\pi +5}.

Explanation

Solution

We start solving the problem by recalling the condition of a continuous function at a given value of x. We then find the left-hand limit for the function f(x)f\left( x \right) at x=5x=5 by using the properties of the modulus function. We then find the right-hand limit for the function f(x)f\left( x \right) at x=5x=5 by using the properties of the modulus function. We equate both these limits and make the necessary calculations to find the desired result.

Complete step-by-step solution
According to the problem, we have given that the function f\left( x \right)=\left\\{ \begin{matrix} a\left| \pi -x \right|+1,x\le 5 \\\ b\left| \pi -x \right|+3,x>5 \\\ \end{matrix} \right. is continuous at x=5x=5. We need to find the value of aba-b.
We know that if the function g(x)g\left( x \right) is continuous at x=ax=a, then the condition to be satisfied is limxag(x)=limxa+g(x)=g(a)\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,g\left( x \right)=g\left( a \right) ---(1).
Let us find the left-hand limit at x=5x=5 for the given function f(x)f\left( x \right).
So, we have limx5f(x)=limx5(aπx+1)\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,\left( a\left| \pi -x \right|+1 \right) ---(2).
Let us recall the definition of ax\left| a-x \right|. The modulus function ax\left| a-x \right| is defined as \left| a-x \right|=\left\\{ \begin{matrix} a-x, x < a \\\ 0, x = a \\\ -\left( a-x \right), x > a \\\ \end{matrix} \right..
We know that the value of π\pi is 3.143.14, which is less than 5.
So, we get the function πx\left| \pi -x \right| as (πx)-\left( \pi -x \right). We use this as equation (2).
limx5f(x)=limx5(a(πx)+1)\Rightarrow \underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,\left( -a\left( \pi -x \right)+1 \right).
limx5f(x)=limx5(axaπ+1)\Rightarrow \underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,\left( ax-a\pi +1 \right).
We know that limxa(cx+d)=c(a)+d\underset{x\to a}{\mathop{\lim }}\,\left( cx+d \right)=c\left( a \right)+d.
limx5f(x)=5aaπ+1\Rightarrow \underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f\left( x \right)=5a-a\pi +1 ---(3).
Let us find the right-hand limit at x=5x=5 for the given function f(x)f\left( x \right).
So, we have limx5+f(x)=limx5+(bπx+3)\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\left( b\left| \pi -x \right|+3 \right) ---(4).
Let us recall the definition of ax\left| a-x \right|. The modulus function ax\left| a-x \right| is defined as \left| a-x \right|=\left\\{ \begin{matrix} a-x, x < a \\\ 0, x = a \\\ -\left( a-x \right), x > a \\\ \end{matrix} \right..
We know that the value of π\pi is 3.143.14, which is less than 5.
So, we get the function πx\left| \pi -x \right| as (πx)-\left( \pi -x \right). We use this equation (4).
limx5+f(x)=limx5+(b(πx)+3)\Rightarrow \underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\left( -b\left( \pi -x \right)+3 \right).
limx5+f(x)=limx5+(bxbπ+3)\Rightarrow \underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\left( bx-b\pi +3 \right).
We know that limxa(cx+d)=c(a)+d\underset{x\to a}{\mathop{\lim }}\,\left( cx+d \right)=c\left( a \right)+d.
limx5+f(x)=5bbπ+3\Rightarrow \underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f\left( x \right)=5b-b\pi +3 ---(5).
From equation (1), we have limx5f(x)=limx5+f(x)\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f\left( x \right).
From equations (3) and (5), we get 5aaπ+1=5bbπ+35a-a\pi +1=5b-b\pi +3.
a(5π)=b(5π)+31\Rightarrow a\left( 5-\pi \right)=b\left( 5-\pi \right)+3-1.
a(5π)b(5π)=2\Rightarrow a\left( 5-\pi \right)-b\left( 5-\pi \right)=2.
(ab)(5π)=2\Rightarrow \left( a-b \right)\left( 5-\pi \right)=2.
ab=25π\Rightarrow a-b=\dfrac{2}{5-\pi }.
We have found the value of aba-b as 25π\dfrac{2}{5-\pi }.
\therefore The correct option for the given problem is (a).

Note: We can also equate any of the limits to the value of f(5)f\left( 5 \right), which will be the same as the left-hand limit. We need not always check left-hand and right-hand limits of the functions that are not varied between the intervals. We should not make calculation mistakes while solving this problem. We should always have left-hand and right-hand limits of the given function as modulus, greatest integer, and fractional part functions.