Solveeit Logo

Question

Question: If the function, \[f\left( x \right)=\left\\{ \begin{matrix} \dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-1...

If the function, f\left( x \right)=\left\\{ \begin{matrix} \dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16},for x\ne 2 \\\ A,for x = 2 \\\ \end{matrix} \right., is continuous at x = 2, then A =
(a) 2
(b) 12\dfrac{1}{2}
(c) 14\dfrac{1}{4}
(d) 0

Explanation

Solution

Apply L – Hospital’s Rule to find the value of left hand limit = right hand limit = limx22x+2164x16\underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16} and substitute this value equal to f(2)=Af\left( 2 \right)=A. Use the theorem that, “if at x = a f(x)g(x)\dfrac{f\left( x \right)}{g\left( x \right)} is of 00\dfrac{0}{0} or \dfrac{\infty }{\infty } form then limxaf(x)g(x)=limxaf(x)g(x)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}”.

Complete step by step answer:
We have been provided that, f\left( x \right)=\left\\{ \begin{matrix} \dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16},forx\ne 2 \\\ A,forx\ne 2 \\\ \end{matrix} \right., is continuous at x = 2 and we have to find the value of A.
Let us see the conditions if a function is continuous at some point x = a.
Now, if a function is continuous at x = a, then the values of left hand side limit (L.H.L), right hand limit (R.H.L) and f (a) must be the same. Mathematically,
limxaf(x)=limxa+f(x)=f(a)\Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right)
In the above question, we have been given that: - x = 2, f (x) = A and at x2x\ne 2, f(x)=2x+2164x16f\left( x \right)=\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}. So, mathematically,
f(2)=A\Rightarrow f\left( 2 \right)=A - (i)
limx2=limx2+=limx2f(x)=limx22x+2164x16\Rightarrow \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,=\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16} - (ii)
So, let us find the value of relation (ii),
limx22x+2164x16\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}, here when we will substitute x = 2 in 2x+2164x16\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16} then it will convert into 00\dfrac{0}{0} form. So, L – Hospital’s Rule can be applied here.
L – Hospital’s Rule states that, “if a function is of the form f(x)g(x)\dfrac{f\left( x \right)}{g\left( x \right)} and at x = a it is of the form 00\dfrac{0}{0} or \dfrac{\infty }{\infty } then limxaf(x)g(x)=limxaf(x)g(x)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}”, where f(x)f'\left( x \right) and g(x)g'\left( x \right) are the derivatives of f(x)f\left( x \right) and g(x)g\left( x \right) respectively.
So, considering 2x+216=f(x){{2}^{x+2}}-16=f\left( x \right) and 4x16=g(x){{4}^{x}}-16=g\left( x \right), we get,
limx22x+2164x16=limx2d[2x+216]dxd[4x16]dx\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\underset{x\to 2}{\mathop{\lim }}\,\dfrac{\dfrac{d\left[ {{2}^{x+2}}-16 \right]}{dx}}{\dfrac{d\left[ {{4}^{x}}-16 \right]}{dx}}
We know that, d[ax]dx=axloga\dfrac{d\left[ {{a}^{x}} \right]}{dx}={{a}^{x}}\log a and derivative of constant is 0. Therefore, we have,

& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2-0}{{{4}^{x}}\log 4-0} \\\ & \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{4}^{x}}\log 4} \\\ & \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{2}^{2x}}\left( \log {{2}^{2}} \right)} \\\ \end{aligned}$$ Applying the formula: - $$\log {{a}^{m}}=m\log a$$, we get, $$\begin{aligned} & \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{2}^{2x}}\times 2\log 2} \\\ & \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}}{{{2}^{2x}}\times 2} \\\ \end{aligned}$$ Applying the formula: - $${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$$ and $$\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$$, we get, $$\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\underset{x\to 2}{\mathop{\lim }}\,{{2}^{\left( x+2 \right)-\left( 1+2x \right)}}=\underset{x\to 2}{\mathop{\lim }}\,{{2}^{1-x}}={{2}^{1-2}}={{2}^{-1}}=\dfrac{1}{2}$$ Since, the function is continuous, therefore, $$\begin{aligned} & \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=f\left( 2 \right) \\\ & \Rightarrow {{2}^{-1}}=A \\\ & \Rightarrow A=\dfrac{1}{{{2}^{1}}} \\\ & \Rightarrow A=\dfrac{1}{2} \\\ \end{aligned}$$ **So, the correct answer is “Option B”.** **Note:** One may note that we can also evaluate the limit without using L – Hospital Rule. We can divide the numerator and denominator with 16 and convert the function in the form $$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{a}^{x}}-1}{x}$$ whose solution is $${{\log }_{e}}a$$. But we have applied L – Hospital’s Rule because it is easier to solve the limit problem with this theorem. The most important thing is that L – Hospital’s Rule is applicable for limits of the form $$\dfrac{0}{0}$$ or $$\dfrac{\infty }{\infty }$$.